Differential Calculus and Stokes' Theorem

Author: Pietro-Luciano Buono

Publisher: Walter de Gruyter GmbH & Co KG

ISBN: 3110438224

Category: Mathematics

Page: 313

View: 2346

This textbook offers a high-level introduction to multi-variable differential calculus. Differential forms are introduced incrementally in the narrative, eventually leading to a unified treatment of Green’s, Stokes’ and Gauss’ theorems. Furthermore, the presentation offers a natural route to differential geometry. Contents: Calculus of Vector Functions Tangent Spaces and 1-forms Line Integrals Differential Calculus of Mappings Applications of Differential Calculus Double and Triple Integrals Wedge Products and Exterior Derivatives Integration of Forms Stokes’ Theorem and Applications
Read More

Author: Gerard Walschap

Publisher: De Gruyter

ISBN: 9783110369496

Category: Mathematics

Page: 365

View: 8624

This text is a modern in-depth study of the subject that includes all the material needed from linear algebra. It then goes on to investigate topics in differential geometry, such as manifolds in Euclidean space, curvature, and the generalization of the fundamental theorem of calculus known as Stokes' theorem.
Read More

A Differential Forms Approach

Author: Harold M. Edwards

Publisher: Springer Science & Business Media

ISBN: 146120271X

Category: Mathematics

Page: 508

View: 3650

This book is a high-level introduction to vector calculus based solidly on differential forms. Informal but sophisticated, it is geometrically and physically intuitive yet mathematically rigorous. It offers remarkably diverse applications, physical and mathematical, and provides a firm foundation for further studies.
Read More

Author: Murray H. Protter,Charles B. Jr. Morrey

Publisher: Springer Science & Business Media

ISBN: 1461210860

Category: Mathematics

Page: 655

View: 9776

Read More

With Applications to Differential Equations

Author: Nail H. Ibragimov

Publisher: Walter de Gruyter GmbH & Co KG

ISBN: 3110379503

Category: Mathematics

Page: 197

View: 4185

This graduate textbook begins by introducing Tensors and Riemannian Spaces, and then elaborates their application in solving second-order differential equations, and ends with introducing theory of relativity and de Sitter space. Based on 40 years of teaching experience, the author compiles a well-developed collection of examples and exercises to facilitate the reader’s learning.
Read More

Author: Judith V. Grabiner

Publisher: Courier Corporation

ISBN: 0486143740

Category: Mathematics

Page: 272

View: 5546

This text examines the reinterpretation of calculus by Augustin-Louis Cauchy and his peers in the 19th century. These intellectuals created a collection of well-defined theorems about limits, continuity, series, derivatives, and integrals. 1981 edition.
Read More

Author: Stefan Samko,Amarino Lebre,António F. dos Santos

Publisher: Springer Science & Business Media

ISBN: 9401702276

Category: Mathematics

Page: 334

View: 8073

These proceedings comprise a large part of the papers presented at the In ternational Conference Factorization, Singular Operators and related problems, which was held from January 28 to February 1, 2002, at the University of th Madeira, Funchal, Portugal, to mark Professor Georgii Litvinchuk's 70 birth day. Experts in a variety of fields came to this conference to pay tribute to the great achievements of Professor Georgii Litvinchuk in the development of vari ous areas of operator theory. The main themes of the conference were focussed around the theory of singular type operators and factorization problems, but other topics such as potential theory and fractional calculus, to name but a couple, were also presented. The goal of the conference was to bring together mathematicians from var ious fields within operator theory and function theory in order to highlight recent advances in problems many of which were originally studied by Profes sor Litvinchuk and his scientific school. A second aim was to stimulate in ternational collaboration even further and promote the interaction of different approaches in current research in these areas. The Proceedings will be of great interest to researchers in Operator The ory, Real and Complex Analysis, Functional and Harmonic Analysis, Potential Theory, Fractional Calculus and other areas, as well as to graduate students looking for the latest results.
Read More

Resurgent Methods and the First Painlevé Equation

Author: Eric Delabaere

Publisher: Springer

ISBN: 3319290002

Category: Mathematics

Page: 230

View: 9193

The aim of this volume is two-fold. First, to show how the resurgent methods introduced in volume 1 can be applied efficiently in a non-linear setting; to this end further properties of the resurgence theory must be developed. Second, to analyze the fundamental example of the First Painlevé equation. The resurgent analysis of singularities is pushed all the way up to the so-called “bridge equation”, which concentrates all information about the non-linear Stokes phenomenon at infinity of the First Painlevé equation. The third in a series of three, entitled Divergent Series, Summability and Resurgence, this volume is aimed at graduate students, mathematicians and theoretical physicists who are interested in divergent power series and related problems, such as the Stokes phenomenon. The prerequisites are a working knowledge of complex analysis at the first-year graduate level and of the theory of resurgence, as presented in volume 1.
Read More

Fluid Models

Author: Remi Sentis

Publisher: Springer Science & Business Media

ISBN: 3319038044

Category: Mathematics

Page: 238

View: 9731

This monograph is dedicated to the derivation and analysis of fluid models occurring in plasma physics. It focuses on models involving quasi-neutrality approximation, problems related to laser propagation in a plasma, and coupling plasma waves and electromagnetic waves. Applied mathematicians will find a stimulating introduction to the world of plasma physics and a few open problems that are mathematically rich. Physicists who may be overwhelmed by the abundance of models and uncertain of their underlying assumptions will find basic mathematical properties of the related systems of partial differential equations. A planned second volume will be devoted to kinetic models. First and foremost, this book mathematically derives certain common fluid models from more general models. Although some of these derivations may be well known to physicists, it is important to highlight the assumptions underlying the derivations and to realize that some seemingly simple approximations turn out to be more complicated than they look. Such approximations are justified using asymptotic analysis wherever possible. Furthermore, efficient simulations of multi-dimensional models require precise statements of the related systems of partial differential equations along with appropriate boundary conditions. Some mathematical properties of these systems are presented which offer hints to those using numerical methods, although numerics is not the primary focus of the book.
Read More

Author: T. Bröcker,K. Jänich

Publisher: Cambridge University Press

ISBN: 9780521284707

Category: Mathematics

Page: 160

View: 8278

This book is intended as an elementary introduction to differential manifolds. The authors concentrate on the intuitive geometric aspects and explain not only the basic properties but also teach how to do the basic geometrical constructions. An integral part of the work are the many diagrams which illustrate the proofs. The text is liberally supplied with exercises and will be welcomed by students with some basic knowledge of analysis and topology.
Read More

Author: Daniel Fleisch,Laura Kinnaman

Publisher: Cambridge University Press

ISBN: 1107054869

Category: Science

Page: 230

View: 7912

Written to complement course textbooks, this book focuses on the topics that undergraduates in physics and engineering find most difficult.
Read More

Author: Richard E. Williamson,Richard H. Crowell,Hale F. Trotter

Publisher: Prentice Hall

ISBN: N.A

Category: Mathematics

Page: 617

View: 1168

Read More

A Geometric View

Author: James J. Callahan

Publisher: Springer Science & Business Media

ISBN: 9781441973320

Category: Mathematics

Page: 526

View: 753

With a fresh geometric approach that incorporates more than 250 illustrations, this textbook sets itself apart from all others in advanced calculus. Besides the classical capstones--the change of variables formula, implicit and inverse function theorems, the integral theorems of Gauss and Stokes--the text treats other important topics in differential analysis, such as Morse's lemma and the Poincaré lemma. The ideas behind most topics can be understood with just two or three variables. The book incorporates modern computational tools to give visualization real power. Using 2D and 3D graphics, the book offers new insights into fundamental elements of the calculus of differentiable maps. The geometric theme continues with an analysis of the physical meaning of the divergence and the curl at a level of detail not found in other advanced calculus books. This is a textbook for undergraduates and graduate students in mathematics, the physical sciences, and economics. Prerequisites are an introduction to linear algebra and multivariable calculus. There is enough material for a year-long course on advanced calculus and for a variety of semester courses--including topics in geometry. The measured pace of the book, with its extensive examples and illustrations, make it especially suitable for independent study.
Read More

Author: Shijun Liao

Publisher: World Scientific

ISBN: 9814551260

Category: Mathematics

Page: 428

View: 4354

Unlike other analytic techniques, the Homotopy Analysis Method (HAM) is independent of small/large physical parameters. Besides, it provides great freedom to choose equation type and solution expression of related linear high-order approximation equations. The HAM provides a simple way to guarantee the convergence of solution series. Such uniqueness differentiates the HAM from all other analytic approximation methods. In addition, the HAM can be applied to solve some challenging problems with high nonlinearity. This book, edited by the pioneer and founder of the HAM, describes the current advances of this powerful analytic approximation method for highly nonlinear problems. Coming from different countries and fields of research, the authors of each chapter are top experts in the HAM and its applications. Contents:Chance and Challenge: A Brief Review of Homotopy Analysis Method (S-J Liao)Predictor Homotopy Analysis Method (PHAM) (S Abbasbandy and E Shivanian)Spectral Homotopy Analysis Method for Nonlinear Boundary Value Problems (S Motsa and P Sibanda)Stability of Auxiliary Linear Operator and Convergence-Control Parameter (R A Van Gorder)A Convergence Condition of the Homotopy Analysis Method (M Turkyilmazoglu)Homotopy Analysis Method for Some Boundary Layer Flows of Nanofluids (T Hayat and M Mustafa)Homotopy Analysis Method for Fractional Swift–Hohenberg Equation (S Das and K Vishal)HAM-Based Package NOPH for Periodic Oscillations of Nonlinear Dynamic Systems (Y-P Liu)HAM-Based Mathematica Package BVPh 2.0 for Nonlinear Boundary Value Problems (Y-L Zhao and S-J Liao) Readership: Graduate students and researchers in applied mathematics, physics, nonlinear mechanics, engineering and finance. Keywords:Analytic Approxiamtion Method;Nonlinear;Homotopy;Applied MathematicsKey Features:The method described in the book can overcome almost all restrictions of other analytic approximation method for nonlinear problemsThis book is the first in homotopy analysis method, covering the newest advances, contributed by many top experts in different fields
Read More

Author: Jean-Luc Brylinski,Ranee Brylinski,Victor Nistor

Publisher: Springer Science & Business Media

ISBN: 1461217709

Category: Mathematics

Page: 403

View: 2473

This book is an outgrowth of the activities of the Center for Geometry and Mathematical Physics (CGMP) at Penn State from 1996 to 1998. The Center was created in the Mathematics Department at Penn State in the fall of 1996 for the purpose of promoting and supporting the activities of researchers and students in and around geometry and physics at the university. The CGMP brings many visitors to Penn State and has ties with other research groups; it organizes weekly seminars as well as annual workshops The book contains 17 contributed articles on current research topics in a variety of fields: symplectic geometry, quantization, quantum groups, algebraic geometry, algebraic groups and invariant theory, and character istic classes. Most of the 20 authors have talked at Penn State about their research. Their articles present new results or discuss interesting perspec tives on recent work. All the articles have been refereed in the regular fashion of excellent scientific journals. Symplectic geometry, quantization and quantum groups is one main theme of the book. Several authors study deformation quantization. As tashkevich generalizes Karabegov's deformation quantization of Kahler manifolds to symplectic manifolds admitting two transverse polarizations, and studies the moment map in the case of semisimple coadjoint orbits. Bieliavsky constructs an explicit star-product on holonomy reducible sym metric coadjoint orbits of a simple Lie group, and he shows how to con struct a star-representation which has interesting holomorphic properties.
Read More

Author: Fernando Sansò,Michael Sideris

Publisher: Springer

ISBN: 3319463586

Category: Science

Page: 81

View: 7298

This book offers a new approach to interpreting the geodetic boundary value problem, successfully obtaining the solutions of the Molodensky and Stokes boundary value problems (BVPs) with the help of downward continuation (DC) based methods. Although DC is known to be an improperly posed operation, classical methods seem to provide numerically sensible results, and therefore it can be concluded that such classical methods must in fact be manifestations of different, mathematically sound approaches. Here, the authors first prove the equivalence of Molodensky’s and Stoke's approaches with Helmert’s reduction in terms of both BVP formulation and BVP solutions by means of the DC method. They then go on to show that this is not merely a downward continuation operation, and provide more rigorous interpretations of the DC approach as a change of boundary approach and as a pseudo BVP solution approach.
Read More

Author: Robert C. Dalang,Davar Khoshnevisan

Publisher: Springer Science & Business Media

ISBN: 3540859934

Category: Mathematics

Page: 216

View: 1051

This title contains lectures that offer an introduction to modern topics in stochastic partial differential equations and bring together experts whose research is centered on the interface between Gaussian analysis, stochastic analysis, and stochastic PDEs.
Read More

Author: Murray Spiegel,Seymour Lipschutz,John Schiller,Dennis Spellman

Publisher: McGraw Hill Professional

ISBN: 0071615709

Category: Study Aids

Page: 384

View: 7950

The guide that helps students study faster, learn better, and get top grades More than 40 million students have trusted Schaum's to help them study faster, learn better, and get top grades. Now Schaum's is better than ever-with a new look, a new format with hundreds of practice problems, and completely updated information to conform to the latest developments in every field of study. Fully compatible with your classroom text, Schaum's highlights all the important facts you need to know. Use Schaum's to shorten your study time-and get your best test scores! Schaum's Outlines-Problem Solved.
Read More

Author: Virginia S Kiryakova

Publisher: CRC Press

ISBN: 9780582219779

Category: Mathematics

Page: 360

View: 5409

In this volume various applications are discussed, in particular to the hyper-Bessel differential operators and equations, Dzrbashjan-Gelfond-Leontiev operators and Borel type transforms, convolutions, new representations of hypergeometric functions, solutions to classes of differential and integral equations, transmutation method, and generalized integral transforms. Some open problems are also posed. This book is intended for graduate and post-graduate students, lecturers, researchers and others working in applied mathematical analysis, mathematical physics and related disciplines.
Read More