Author: Allan Gut

Publisher: Springer Science & Business Media

ISBN: 1441901620

Category: Mathematics

Page: 303

View: 5295

This is the only book that gives a rigorous and comprehensive treatment with lots of examples, exercises, remarks on this particular level between the standard first undergraduate course and the first graduate course based on measure theory. There is no competitor to this book. The book can be used in classrooms as well as for self-study.
Read More

Author: Leopold Schmetterer

Publisher: Springer-Verlag

ISBN: 3662259338

Category: Mathematics

Page: 597

View: 4666

Die Frage nach dem Aufgabenkreis der Statistik im allgemeinen kann nicht mit wenigen Worten umrissen werden. Wenn man etwas näher auf die geschichtliche Entwicklung des Begriffes Statistik eingeht\ so findet man, daß lange Zeit darunter nur die Beschrei bung von "Staatsmerkwürdigkeiten" (wie Bevölkerungszahl, Bo denbeschaffenheit, Sammlung wirtschaftlicher Daten) verstanden wurde. Erst in neuerer Zeit drang die statistische Betrachtungsweise auch in die Naturwissenschaften ein (BOLTZMANN, GIBBS, MAx WELL). Fußend auf dem Boden der seit Beginn dieses Jahrhunderts sich rasch entwickelnden Wahrscheinlichkeitstheorie hat dann ins besondere in den letzten dreißig Jahren auch die mathematische Statistik einen unerhörten Aufschwung genommen und die Metho den der statistischen Analyse mit einer kaum zu übersehenden Fülle von Gedanken bereichert. Statistische Überlegungen treten heute in den verschiedensten Wissensgebieten auf. Es genügt, wenn wir neben den Wirtschaftswissenschaften als Beispiele die Astronomie, die Biologie, die Medizin, die Psychologie, die Physik und die Soziologie anführen. Wenn es also, wie gesagt, nicht leicht ist, den allgemeinen Be griff der Statistik kurz zu charakterisieren, so geht man doch wohl nicht fehl, wenn man feststellt, daß sich die Statistik mit dem Studium von Erscheinungen befaßt, die entweder eine große Zahl von Individuen betreffen, oder sonst in irgendeiner Weise eine Viel falt von Einzelerscheinungen zusammenfassen. Man kann somit als ein Charakteristikum der Statistik das Studium der Massen erscheinungen betrachten. Es ist eine Erfahrungstatsache, daß bei Massenerscheinungen Gesetzmäßigkeiten nachgewiesen werden können, die bei Einzelerscheinungen kein Gegenstück haben. Das 1 Vgl. W. WrNKLER, Grundriß der Statistik I, 2.
Read More

Author: Michael Mürmann

Publisher: Springer-Verlag

ISBN: 364238160X

Category: Mathematics

Page: 428

View: 1031

Dieses Lehrbuch beschäftigt sich mit den zentralen Gebieten einer maßtheoretisch orientierten Wahrscheinlichkeitstheorie im Umfang einer zweisemestrigen Vorlesung. Nach den Grundlagen werden Grenzwertsätze und schwache Konvergenz behandelt. Es folgt die Darstellung und Betrachtung der stochastischen Abhängigkeit durch die bedingte Erwartung, die mit der Radon-Nikodym-Ableitung realisiert wird. Sie wird angewandt auf die Theorie der stochastischen Prozesse, die nach der allgemeinen Konstruktion aus der Untersuchung von Martingalen und Markov-Prozessen besteht. Neu in einem Lehrbuch über allgemeine Wahrscheinlichkeitstheorie ist eine Einführung in die stochastische Analysis von Semimartingalen auf der Grundlage einer geeigneten Stetigkeitsbedingung mit Anwendungen auf die Theorie der Finanzmärkte. Das Buch enthält zahlreiche Übungen, teilweise mit Lösungen. Neben der Theorie vertiefen Anmerkungen, besonders zu mathematischen Modellen für Phänomene der Realität, das Verständnis.​
Read More

An Intermediate Course with Examples in R

Author: Richard M. Heiberger,Burt Holland

Publisher: Springer

ISBN: 1493921223

Category: Mathematics

Page: 898

View: 3386

This contemporary presentation of statistical methods features extensive use of graphical displays for exploring data and for displaying the analysis. The authors demonstrate how to analyze data—showing code, graphics, and accompanying tabular listings—for all the methods they cover. They emphasize how to construct and interpret graphs. They discuss principles of graphical design. They identify situations where visual impressions from graphs may need confirmation from traditional tabular results. All chapters have exercises. The authors provide and discuss R functions for all the new graphical display formats. All graphs and tabular output in the book were constructed using these functions. Complete R scripts for all examples and figures are provided for readers to use as models for their own analyses. This book can serve as a standalone text for statistics majors at the master’s level and for other quantitatively oriented disciplines at the doctoral level, and as a reference book for researchers. In-depth discussions of regression analysis, analysis of variance, and design of experiments are followed by introductions to analysis of discrete bivariate data, nonparametrics, logistic regression, and ARIMA time series modeling. The authors illustrate classical concepts and techniques with a variety of case studies using both newer graphical tools and traditional tabular displays. The Second Edition features graphs that are completely redrawn using the more powerful graphics infrastructure provided by R's lattice package. There are new sections in several of the chapters, revised sections in all chapters and several completely new appendices. New graphical material includes: • an expanded chapter on graphics • a section on graphing Likert Scale Data to build on the importance of rating scales in fields from population studies to psychometrics • a discussion on design of graphics that will work for readers with color-deficient vision • an expanded discussion on the design of multi-panel graphics • expanded and new sections in the discrete bivariate statistics capter on the use of mosaic plots for contingency tables including the n×2×2 tables for which the Mantel–Haenszel–Cochran test is appropriate • an interactive (using the shiny package) presentation of the graphics for the normal and t-tables that is introduced early and used in many chapters The new appendices include discussions of R, the HH package designed for R (the material in the HH package was distributed as a set of standalone functions with the First Edition of this book), the R Commander package, the RExcel system, the shiny package, and a minimal discussion on writing R packages. There is a new appendix on computational precision illustrating and explaining the FAQ (Frequently Asked Questions) about the differences between the familiar real number system and the less-familiar floating point system used in computers. The probability distributions appendix has been expanded to include more distributions (all the distributions in base R) and to include graphs of each. The editing appendix from the First Edition has been split into four expanded appendices—on working style, writing style, use of a powerful editor, and use of LaTeX for document preparation.
Read More

A Comprehensive Treatment

Author: Giuseppe Campolieti,Roman N. Makarov

Publisher: CRC Press

ISBN: 1439892431

Category: Business & Economics

Page: 829

View: 3635

Versatile for Several Interrelated Courses at the Undergraduate and Graduate Levels Financial Mathematics: A Comprehensive Treatment provides a unified, self-contained account of the main theory and application of methods behind modern-day financial mathematics. Tested and refined through years of the authors’ teaching experiences, the book encompasses a breadth of topics, from introductory to more advanced ones. Accessible to undergraduate students in mathematics, finance, actuarial science, economics, and related quantitative areas, much of the text covers essential material for core curriculum courses on financial mathematics. Some of the more advanced topics, such as formal derivative pricing theory, stochastic calculus, Monte Carlo simulation, and numerical methods, can be used in courses at the graduate level. Researchers and practitioners in quantitative finance will also benefit from the combination of analytical and numerical methods for solving various derivative pricing problems. With an abundance of examples, problems, and fully worked out solutions, the text introduces the financial theory and relevant mathematical methods in a mathematically rigorous yet engaging way. Unlike similar texts in the field, this one presents multiple problem-solving approaches, linking related comprehensive techniques for pricing different types of financial derivatives. The book provides complete coverage of both discrete- and continuous-time financial models that form the cornerstones of financial derivative pricing theory. It also presents a self-contained introduction to stochastic calculus and martingale theory, which are key fundamental elements in quantitative finance.
Read More

Author: Krishna B. Athreya,Soumendra N. Lahiri

Publisher: Springer Science & Business Media

ISBN: 038732903X

Category: Business & Economics

Page: 618

View: 7697

This is a graduate level textbook on measure theory and probability theory. The book can be used as a text for a two semester sequence of courses in measure theory and probability theory, with an option to include supplemental material on stochastic processes and special topics. It is intended primarily for first year Ph.D. students in mathematics and statistics although mathematically advanced students from engineering and economics would also find the book useful. Prerequisites are kept to the minimal level of an understanding of basic real analysis concepts such as limits, continuity, differentiability, Riemann integration, and convergence of sequences and series. A review of this material is included in the appendix. The book starts with an informal introduction that provides some heuristics into the abstract concepts of measure and integration theory, which are then rigorously developed. The first part of the book can be used for a standard real analysis course for both mathematics and statistics Ph.D. students as it provides full coverage of topics such as the construction of Lebesgue-Stieltjes measures on real line and Euclidean spaces, the basic convergence theorems, L^p spaces, signed measures, Radon-Nikodym theorem, Lebesgue's decomposition theorem and the fundamental theorem of Lebesgue integration on R, product spaces and product measures, and Fubini-Tonelli theorems. It also provides an elementary introduction to Banach and Hilbert spaces, convolutions, Fourier series and Fourier and Plancherel transforms. Thus part I would be particularly useful for students in a typical Statistics Ph.D. program if a separate course on real analysis is not a standard requirement. Part II (chapters 6-13) provides full coverage of standard graduate level probability theory. It starts with Kolmogorov's probability model and Kolmogorov's existence theorem. It then treats thoroughly the laws of large numbers including renewal theory and ergodic theorems with applications and then weak convergence of probability distributions, characteristic functions, the Levy-Cramer continuity theorem and the central limit theorem as well as stable laws. It ends with conditional expectations and conditional probability, and an introduction to the theory of discrete time martingales. Part III (chapters 14-18) provides a modest coverage of discrete time Markov chains with countable and general state spaces, MCMC, continuous time discrete space jump Markov processes, Brownian motion, mixing sequences, bootstrap methods, and branching processes. It could be used for a topics/seminar course or as an introduction to stochastic processes. Krishna B. Athreya is a professor at the departments of mathematics and statistics and a Distinguished Professor in the College of Liberal Arts and Sciences at the Iowa State University. He has been a faculty member at University of Wisconsin, Madison; Indian Institute of Science, Bangalore; Cornell University; and has held visiting appointments in Scandinavia and Australia. He is a fellow of the Institute of Mathematical Statistics USA; a fellow of the Indian Academy of Sciences, Bangalore; an elected member of the International Statistical Institute; and serves on the editorial board of several journals in probability and statistics. Soumendra N. Lahiri is a professor at the department of statistics at the Iowa State University. He is a fellow of the Institute of Mathematical Statistics, a fellow of the American Statistical Association, and an elected member of the International Statistical Institute.
Read More

Author: Allen B. Downey

Publisher: O'Reilly Germany

ISBN: 3868993436

Category: Computers

Page: 160

View: 5601

Wenn Sie programmieren können, beherrschen Sie bereits Techniken, um aus Daten Wissen zu extrahieren. Diese kompakte Einführung in die Statistik zeigt Ihnen, wie Sie rechnergestützt, anstatt auf mathematischem Weg Datenanalysen mit Python durchführen können. Praktischer Programmier-Workshop statt grauer Theorie: Das Buch führt Sie anhand eines durchgängigen Fallbeispiels durch eine vollständige Datenanalyse -- von der Datensammlung über die Berechnung statistischer Kennwerte und Identifikation von Mustern bis hin zum Testen statistischer Hypothesen. Gleichzeitig werden Sie mit statistischen Verteilungen, den Regeln der Wahrscheinlichkeitsrechnung, Visualisierungsmöglichkeiten und vielen anderen Arbeitstechniken und Konzepten vertraut gemacht. Statistik-Konzepte zum Ausprobieren: Entwickeln Sie über das Schreiben und Testen von Code ein Verständnis für die Grundlagen von Wahrscheinlichkeitsrechnung und Statistik: Überprüfen Sie das Verhalten statistischer Merkmale durch Zufallsexperimente, zum Beispiel indem Sie Stichproben aus unterschiedlichen Verteilungen ziehen. Nutzen Sie Simulationen, um Konzepte zu verstehen, die auf mathematischem Weg nur schwer zugänglich sind. Lernen Sie etwas über Themen, die in Einführungen üblicherweise nicht vermittelt werden, beispielsweise über die Bayessche Schätzung. Nutzen Sie Python zur Bereinigung und Aufbereitung von Rohdaten aus nahezu beliebigen Quellen. Beantworten Sie mit den Mitteln der Inferenzstatistik Fragestellungen zu realen Daten.
Read More

Author: N.A

Publisher: N.A

ISBN: N.A

Category: Statistics

Page: N.A

View: 5547

Read More

Theory and Applications

Author: Gunnar Blom

Publisher: Springer Science & Business Media

ISBN: 1461235669

Category: Mathematics

Page: 356

View: 7602

This is a somewhat extended and modified translation of the third edition of the text, first published in 1969. The Swedish edition has been used for many years at the Royal Institute of Technology in Stockholm, and at the School of Engineering at Link6ping University. It is also used in elementary courses for students of mathematics and science. The book is not intended for students interested only in theory, nor is it suited for those seeking only statistical recipes. Indeed, it is designed to be intermediate between these extremes. I have given much thought to the question of dividing the space, in an appropriate way, between mathematical arguments and practical applications. Mathematical niceties have been left aside entirely, and many results are obtained by analogy. The students I have in mind should have three ingredients in their course: elementary probability theory with applications, statistical theory with applications, and something about the planning of practical investiga tions. When pouring these three ingredients into the soup, I have tried to draw upon my experience as a university teacher and on my earlier years as an industrial statistician. The programme may sound bold, and the reader should not expect too much from this book. Today, probability, statistics and the planning of investigations cover vast areas and, in 356 pages, only the most basic problems can be discussed. If the reader gains a good understanding of probabilistic and statistical reasoning, the main purpose of the book has been fulfilled.
Read More

Author: T. Cacoullos

Publisher: Springer Science & Business Media

ISBN: 1461245265

Category: Mathematics

Page: 248

View: 1212

The author, the founder of the Greek Statistical Institute, has based this book on the two volumes of his Greek edition which has been used by over ten thousand students during the past fifteen years. It can serve as a companion text for an introductory or intermediate level probability course. Those will benefit most who have a good grasp of calculus, yet, many others, with less formal mathematical background can also benefit from the large variety of solved problems ranging from classical combinatorial problems to limit theorems and the law of iterated logarithms. It contains 329 problems with solutions as well as an addendum of over 160 exercises and certain complements of theory and problems.
Read More

Author: Robert Hafner

Publisher: Springer-Verlag

ISBN: 3709169445

Category: Mathematics

Page: 512

View: 6721

Das Buch ist eine Einführung in die Wahrscheinlichkeitsrechnung und mathematische Statistik auf mittlerem mathematischen Niveau. Die Pädagogik der Darstellung unterscheidet sich in wesentlichen Teilen – Einführung der Modelle für unabhängige und abhängige Experimente, Darstellung des Suffizienzbegriffes, Ausführung des Zusammenhanges zwischen Testtheorie und Theorie der Bereichschätzung, allgemeine Diskussion der Modellentwicklung – erheblich von der anderer vergleichbarer Lehrbücher. Die Darstellung ist, soweit auf diesem Niveau möglich, mathematisch exakt, verzichtet aber bewußt und ebenfalls im Gegensatz zu vergleichbaren Texten auf die Erörterung von Meßbarkeitsfragen. Der Leser wird dadurch erheblich entlastet, ohne daß wesentliche Substanz verlorengeht. Das Buch will allen, die an der Anwendung der Statistik auf solider Grundlage interessiert sind, eine Einführung bieten, und richtet sich an Studierende und Dozenten aller Studienrichtungen, für die mathematische Statistik ein Werkzeug ist.
Read More

Intermediate Statistical Methods

Author: Mervyn G. Marasinghe,Kenneth J. Koehler

Publisher: Springer

ISBN: 3319692399

Category: Computers

Page: 679

View: 9625

The aim of this textbook (previously titled SAS for Data Analytics) is to teach the use of SAS for statistical analysis of data for advanced undergraduate and graduate students in statistics, data science, and disciplines involving analyzing data. The book begins with an introduction beyond the basics of SAS, illustrated with non-trivial, real-world, worked examples. It proceeds to SAS programming and applications, SAS graphics, statistical analysis of regression models, analysis of variance models, analysis of variance with random and mixed effects models, and then takes the discussion beyond regression and analysis of variance to conclude. Pedagogically, the authors introduce theory and methodological basis topic by topic, present a problem as an application, followed by a SAS analysis of the data provided and a discussion of results. The text focuses on applied statistical problems and methods. Key features include: end of chapter exercises, downloadable SAS code and data sets, and advanced material suitable for a second course in applied statistics with every method explained using SAS analysis to illustrate a real-world problem. New to this edition: • Covers SAS v9.2 and incorporates new commands • Uses SAS ODS (output delivery system) for reproduction of tables and graphics output • Presents new commands needed to produce ODS output • All chapters rewritten for clarity • New and updated examples throughout • All SAS outputs are new and updated, including graphics • More exercises and problems • Completely new chapter on analysis of nonlinear and generalized linear models • Completely new appendix Mervyn G. Marasinghe, PhD, is Associate Professor Emeritus of Statistics at Iowa State University, where he has taught courses in statistical methods and statistical computing. Kenneth J. Koehler, PhD, is University Professor of Statistics at Iowa State University, where he teaches courses in statistical methodology at both graduate and undergraduate levels and primarily uses SAS to supplement his teaching.
Read More

Eine alternative Betrachtung

Author: Malcolm S. Longair

Publisher: Springer-Verlag

ISBN: 3642761119

Category: Science

Page: 380

View: 1805

"Dies ist kein Lehrbuch der theoretischen Physik, auch kein Kompendium der Physikgeschichte ... , vielmehr eine recht anspruchsvolle Sammlung historischer Miniaturen zur Vergangenheit der theoretischen Physik - ihrer "Sternstunden", wenn man so will. Frei vom Zwang, etwas Erschöpfendes vorlegen zu müssen, gelingt dem Autor etwas Seltenes: einen "lebendigen" Zugang zum Ideengebäude der modernen Physik freizulegen, ... zu zeigen, wie Physik in praxi entsteht... Als Vehikel seiner Absichten dienen dem Autor geschichtliche Fallstudien, insgesamt sieben an der Zahl. Aus ihnen extrahiert er das seiner Meinung nach Lehrhafte, dabei bestrebt, mathematische Anachronismen womöglich zu vermeiden... Als Student hätte ich mir diese gescheiten Essays zum Werden unserer heutigen physikalischen Weltsicht gewünscht. Sie sind originell, didaktisch klug und genieren sich auch nicht, von der Faszination zu sprechen, die ... von der Physik ausgeht. Unnötig darauf hinzuweisen, das sie ein gründliches "konventionelles" Studium weder ersetzen wollen noch können, sie vermögen aber, dazu zu ermuntern." #Astronomische Nachrichten (zur englischen Ausgabe)#1
Read More

Author: Werner Greub

Publisher: Springer-Verlag

ISBN: 3642663850

Category: Mathematics

Page: 222

View: 7741

Read More

Algorithmen und Analysis

Author: Wolfgang Hackbusch

Publisher: Springer Science & Business Media

ISBN: 3642002218

Category: Mathematics

Page: 451

View: 3383

Bei der Diskretisierung von Randwertaufgaben und Integralgleichungen entstehen große, eventuell auch voll besetzte Matrizen. In dem Band stellt der Autor eine neuartige Methode dar, die es erstmals erlaubt, solche Matrizen nicht nur effizient zu speichern, sondern auch alle Matrixoperationen einschließlich der Matrixinversion bzw. der Dreieckszerlegung approximativ durchzuführen. Anwendung findet diese Technik nicht nur bei der Lösung großer Gleichungssysteme, sondern auch bei Matrixgleichungen und der Berechnung von Matrixfunktionen.
Read More

Author: Vladimir I. Arnold

Publisher: Springer-Verlag

ISBN: 3642564801

Category: Mathematics

Page: 344

View: 3976

nen (die fast unverändert in moderne Lehrbücher der Analysis übernommen wurde) ermöglichten ihm nach seinen eigenen Worten, "in einer halben Vier telstunde" die Flächen beliebiger Figuren zu vergleichen. Newton zeigte, daß die Koeffizienten seiner Reihen proportional zu den sukzessiven Ableitungen der Funktion sind, doch ging er darauf nicht weiter ein, da er zu Recht meinte, daß die Rechnungen in der Analysis bequemer auszuführen sind, wenn man nicht mit höheren Ableitungen arbeitet, sondern die ersten Glieder der Reihenentwicklung ausrechnet. Für Newton diente der Zusammenhang zwischen den Koeffizienten der Reihe und den Ableitungen eher dazu, die Ableitungen zu berechnen als die Reihe aufzustellen. Eine von Newtons wichtigsten Leistungen war seine Theorie des Sonnensy stems, die in den "Mathematischen Prinzipien der Naturlehre" ("Principia") ohne Verwendung der mathematischen Analysis dargestellt ist. Allgemein wird angenommen, daß Newton das allgemeine Gravitationsgesetz mit Hilfe seiner Analysis entdeckt habe. Tatsächlich hat Newton (1680) lediglich be wiesen, daß die Bahnkurven in einem Anziehungsfeld Ellipsen sind, wenn die Anziehungskraft invers proportional zum Abstandsquadrat ist: Auf das Ge setz selbst wurde Newton von Hooke (1635-1703) hingewiesen (vgl. § 8) und es scheint, daß es noch von weiteren Forschern vermutet wurde.
Read More

Author: Petar Todorovic

Publisher: Springer Science & Business Media

ISBN: 1461397421

Category: Mathematics

Page: 289

View: 7238

This text on stochastic processes and their applications is based on a set of lectures given during the past several years at the University of California, Santa Barbara (UCSB). It is an introductory graduate course designed for classroom purposes. Its objective is to provide graduate students of statistics with an overview of some basic methods and techniques in the theory of stochastic processes. The only prerequisites are some rudiments of measure and integration theory and an intermediate course in probability theory. There are more than 50 examples and applications and 243 problems and complements which appear at the end of each chapter. The book consists of 10 chapters. Basic concepts and definitions are pro vided in Chapter 1. This chapter also contains a number of motivating ex amples and applications illustrating the practical use of the concepts. The last five sections are devoted to topics such as separability, continuity, and measurability of random processes, which are discussed in some detail. The concept of a simple point process on R+ is introduced in Chapter 2. Using the coupling inequality and Le Cam's lemma, it is shown that if its counting function is stochastically continuous and has independent increments, the point process is Poisson. When the counting function is Markovian, the sequence of arrival times is also a Markov process. Some related topics such as independent thinning and marked point processes are also discussed. In the final section, an application of these results to flood modeling is presented.
Read More