Author: Brian Hilton Flowers,Sir Brian Hilton Flowers

Publisher: Oxford University Press on Demand

ISBN: 9780198506935

Category: Computers

Page: 555

View: 2660

Designed for the many applied mathematicians and engineers who wish to explore computerized numerical methods, this text explores the power of C++ as a tool for work in numerical methods. This revision of the successful first edition includes for the first time information on programming in Windows-based environments. In addition it includes new topics and methods throughout the text that clarify and enhance the treatment of the subject.
Read More

Author: Steve Otto,James P. Denier

Publisher: Springer Science & Business Media

ISBN: 9781852339197

Category: Business & Economics

Page: 463

View: 9326

The material presented in this volume provides an introduction to the numerical methods that are typically encountered and used in undergraduate science and engineering courses, and is developed in tandem with MATLAB, which allows rapid prototyping and testing of the methods.
Read More

Author: James M. Ortega,Andrew Swift Grimshaw

Publisher: Oxford University Press on Demand

ISBN: 9780195117677

Category: Computers

Page: 273

View: 2836

An introduction to C++ providing explanations of the basics of numerical methods, scientific computing and the basic constructs of C++. Subsequent chapters revisit these topics to treat them in more detail. It also covers numerical methods used in scientific and engineering computation.
Read More

Author: Anastasis C. Polycarpou

Publisher: Morgan & Claypool Publishers

ISBN: 1598290460

Category: Technology & Engineering

Page: 115

View: 7648

This lecture is written primarily for the non-expert engineer or the undergraduate or graduate student who wants to learn, for the first time, the finite element method with applications to electromagnetics. It is also designed for research engineers who have knowledge of other numerical techniques and want to familiarize themselves with the finite element method.Finite element method is a numerical method used to solve boundary-value problems characterized by a partial differential equation and a set of boundary conditions. Author Anastasis Polycarpou provides the reader with all information necessary to successfully apply the finite element method to one- and two-dimensional boundary-value problems in electromagnetics.The book is accompanied by a number of codes written by the author in Matlab. These are the finite element codes that were used to generate most of the graphs presented in this book. Specifically, there are three Matlab codes for the one-dimensional case (Chapter 1) and two Matlab codes for the two-dimensional case (Chapter 2). The reader may execute these codes, modify certain parameters such as mesh size or object dimensions, and visualize the results. The codes are available on the Morgan & Claypool Web site at http://www.morganclaypool.com.
Read More

Author: Mark H. Holmes

Publisher: Springer Science & Business Media

ISBN: 0387308911

Category: Mathematics

Page: 239

View: 611

This book shows how to derive, test and analyze numerical methods for solving differential equations, including both ordinary and partial differential equations. The objective is that students learn to solve differential equations numerically and understand the mathematical and computational issues that arise when this is done. Includes an extensive collection of exercises, which develop both the analytical and computational aspects of the material. In addition to more than 100 illustrations, the book includes a large collection of supplemental material: exercise sets, MATLAB computer codes for both student and instructor, lecture slides and movies.
Read More

Author: C. Xavier

Publisher: New Age International

ISBN: 9788122406702

Category: FORTRAN 77 (Computer program language)

Page: 527

View: 1666

Fortran Is The Pioneer Computer Language Originally Designed To Suit Numerical, Scientific And Engineering Computations. In Spite Of The Birth Of Several Computer Languages, Fortran Is Still Used As A Primary Tool For Programming Numerical Computations. In This Book All The Features Of Fortran 77 Have Been Elaborately Explained With The Support Of Examples And Illustrations. Programs Have Been Designed And Developed In A Systematic Way For All The Classical Problems. All The Topics Of Numerical Methods Have Been Presented In A Simple Style And Algorithms Developed. Complete Fortran 77 Programs And More Than One Sets Of Sample Data Have Been Given For Each Method. The Content Of The Book Have Been Carefully Tailored For A Course Material Of A One Semester Course For The Computer Science, Mathematics And Physics Students.
Read More

C, C++, and MATLAB

Author: B. S. Grewal

Publisher: N.A

ISBN: 9781683921288

Category: Science

Page: 925

View: 9599

This book is intended as an introduction to numerical methods for scientists and engineers. Providing an excellent balance of theoretical and applied topics, it shows the numerical methods used with C, C++, and MATLAB.
Read More

Author: Petre Teodorescu,Nicolae-Doru Stanescu,Nicolae Pandrea

Publisher: John Wiley & Sons

ISBN: 1118614623

Category: Computers

Page: 646

View: 8201

A much-needed guide on how to use numerical methods to solvepractical engineering problems Bridging the gap between mathematics and engineering,Numerical Analysis with Applications in Mechanics andEngineering arms readers with powerful tools for solvingreal-world problems in mechanics, physics, and civil and mechanicalengineering. Unlike most books on numerical analysis, thisoutstanding work links theory and application, explains themathematics in simple engineering terms, and clearly demonstrateshow to use numerical methods to obtain solutions and interpretresults. Each chapter is devoted to a unique analytical methodology,including a detailed theoretical presentation and emphasis onpractical computation. Ample numerical examples and applicationsround out the discussion, illustrating how to work out specificproblems of mechanics, physics, or engineering. Readers will learnthe core purpose of each technique, develop hands-onproblem-solving skills, and get a complete picture of the studiedphenomenon. Coverage includes: How to deal with errors in numerical analysis Approaches for solving problems in linear and nonlinearsystems Methods of interpolation and approximation of functions Formulas and calculations for numerical differentiation andintegration Integration of ordinary and partial differential equations Optimization methods and solutions for programmingproblems Numerical Analysis with Applications in Mechanics andEngineering is a one-of-a-kind guide for engineers usingmathematical models and methods, as well as for physicists andmathematicians interested in engineering problems.
Read More

Author: Christopher J. Zarowski

Publisher: John Wiley & Sons

ISBN: 9780471650409

Category: Mathematics

Page: 608

View: 6040

This book is an introduction to numerical analysis and intendsto strike a balance between analytical rigor and the treatment ofparticular methods for engineering problems Emphasizes the earlier stages of numerical analysis forengineers with real-life problem-solving solutions applied tocomputing and engineering Includes MATLAB oriented examples An Instructor's Manual presenting detailed solutions to all theproblems in the book is available from the Wiley editorialdepartment.
Read More

Author: PRADEEP AHUJA

Publisher: PHI Learning Pvt. Ltd.

ISBN: 8120340183

Category: Technology & Engineering

Page: 308

View: 5920

This book is an exhaustive presentation of the numerical methods used in chemical engineering. Intended primarily as a textbook for BE/BTech students of chemical engineering, the book will also be useful to research and development/process professionals in the fields of chemical, biochemical, mechanical and biomedical engineering. The initial chapters discuss the linear and nonlinear algebraic equations. The ensuing chapters cover the problems in chemical engineering thermodynamics as well as initial value problems, boundary value problems and convection–diffusion problems. Topics related to chemical reaction, dispersion and diffusion as well as steady and transient heat conduction are treated in the final chapters. The book covers a large number of numerical methods including tridiagonal matrix algorithm (TDMA) method, Newton’s method, Runge–Kutta fourth-order method, Upwind Difference Scheme (UDS) method and Alternating Direction Implicit (ADI) method. Strong emphasis is given on applications and uses of numerical analysis specifically required at the undergraduate level. The book contains numerous worked-out examples and chapter-end exercises. The answers to all chapter-end exercises are provided. The Appendix contains a total of 33 programs in C++ related to the various numerical methods explained in the book.
Read More

Numerical Methods in a Unified Object-Oriented Approach

Author: Yair Shapira

Publisher: Cambridge University Press

ISBN: 9780898716016

Category: Computers

Page: 500

View: 1941

This comprehensive book not only introduces the C and C++ programming languages but also shows how to use them in the numerical solution of partial differential equations (PDEs). It leads the reader through the entire solution process, from the original PDE, through the discretization stage, to the numerical solution of the resulting algebraic system. The well-debugged and tested code segments implement the numerical methods efficiently and transparently. Basic and advanced numerical methods are introduced and implemented easily and efficiently in a unified object-oriented approach.The high level of abstraction available in C++ is particularly useful in the implementation of complex mathematical objects, such as unstructured mesh, sparse matrix, and multigrid hierarchy, often used in numerical modeling. This book introduces a unified approach for the implementation of these objects. The code segments and their detailed explanations clearly show how easy it is to implement advanced algorithms in C++. Solving PDEs in C++ contains all the required background in programming, PDEs, and numerical methods; only an elementary background in linear algebra and calculus is required. Useful exercises and solutions conclude each chapter. For the more advanced reader, there is also material on stability analysis and weak formulation. The final parts of the book demonstrate the object-oriented approach in advanced applications.The book is written for researchers, engineers, and advanced students who wish to increase their familiarity with numerical methods and to implement them in modern programming tools. Solving PDEs in C++ can be used as a textbook in courses in C++ with applications, C++ in engineering, numerical analysis, and numerical PDEs at the advanced undergraduate and graduate levels. Because it is self-contained, the book is also suitable for self-study by researchers and students in applied and computational science and engineering. Contents List of Figures; List of Tables; Preface; Part I: Programming. Chapter 1: Introduction to C; Chapter 2: Introduction to C++; Chapter 3: Data Structures; Part II: The Object-Oriented Approach. Chapter 4: Object-Oriented Programming; Chapter 5: Algorithms and Their Object-Oriented Implementation; Chapter 6: Object-Oriented Analysis; Part III: Partial Differential Equations and Their Discretization. Chapter 7: The Convection-Diffusion Equation; Chapter 8: Stability Analysis 209; Chapter 9: Nonlinear Equations; Chapter 10: Application in Image Processing; Part IV: The Finite-Element Discretization Method. Chapter 11: The Weak Formulation; Chapter 12: Linear Finite Elements; Chapter 13: Unstructured Finite-Element Meshes; Chapter 14: Adaptive Mesh Refinement; Chapter 15: High-Order Finite Elements; Part V: The Numerical Solution of Large Sparse Linear Systems of Equations. Chapter 16: Sparse Matrices and Their Implementation; Chapter 17: Iterative Methods for Large Sparse Linear Systems; Chapter 18: Parallelism; Part VI: Applications. Chapter 19: Diffusion Equations; Chapter 20: The Linear Elasticity Equations; Chapter 21: The Stokes Equations; Chapter 22: Electromagnetic Waves; Appendix; Bibliography; Index.
Read More

A MATLAB Approach, Third Edition

Author: Abdelwahab Kharab,Ronald B. Guenther

Publisher: CRC Press

ISBN: 1439869006

Category: Mathematics

Page: 576

View: 5742

Highly recommended by CHOICE, previous editions of this popular textbook offered an accessible and practical introduction to numerical analysis. An Introduction to Numerical Methods: A MATLAB® Approach, Third Edition continues to present a wide range of useful and important algorithms for scientific and engineering applications. The authors use MATLAB to illustrate each numerical method, providing full details of the computer results so that the main steps are easily visualized and interpreted. New to the Third Edition A chapter on the numerical solution of integral equations A section on nonlinear partial differential equations (PDEs) in the last chapter Inclusion of MATLAB GUIs throughout the text The book begins with simple theoretical and computational topics, including computer floating point arithmetic, errors, interval arithmetic, and the root of equations. After presenting direct and iterative methods for solving systems of linear equations, the authors discuss interpolation, spline functions, concepts of least-squares data fitting, and numerical optimization. They then focus on numerical differentiation and efficient integration techniques as well as a variety of numerical techniques for solving linear integral equations, ordinary differential equations, and boundary-value problems. The book concludes with numerical techniques for computing the eigenvalues and eigenvectors of a matrix and for solving PDEs. CD-ROM Resource The accompanying CD-ROM contains simple MATLAB functions that help students understand how the methods work. These functions provide a clear, step-by-step explanation of the mechanism behind the algorithm of each numerical method and guide students through the calculations necessary to understand the algorithm. Written in an easy-to-follow, simple style, this text improves students’ ability to master the theoretical and practical elements of the methods. Through this book, they will be able to solve many numerical problems using MATLAB.
Read More

Author: Endre Süli,David F. Mayers

Publisher: Cambridge University Press

ISBN: 9780521007948

Category: Mathematics

Page: 433

View: 3054

Introduction to numerical analysis combining rigour with practical applications. Numerous exercises plus solutions.
Read More

Author: Joe Pitt-Francis,Jonathan Whiteley

Publisher: Springer Science & Business Media

ISBN: 1447127366

Category: Computers

Page: 250

View: 3408

This easy-to-read textbook/reference presents an essential guide to object-oriented C++ programming for scientific computing. With a practical focus on learning by example, the theory is supported by numerous exercises. Features: provides a specific focus on the application of C++ to scientific computing, including parallel computing using MPI; stresses the importance of a clear programming style to minimize the introduction of errors into code; presents a practical introduction to procedural programming in C++, covering variables, flow of control, input and output, pointers, functions, and reference variables; exhibits the efficacy of classes, highlighting the main features of object-orientation; examines more advanced C++ features, such as templates and exceptions; supplies useful tips and examples throughout the text, together with chapter-ending exercises, and code available to download from Springer.
Read More

Interactive Methods and Programs with FORTRAN, QuickBASIC, MATLAB, and Mathematica

Author: Yen-Ching Pao

Publisher: CRC Press

ISBN: 9781420049619

Category: Computers

Page: 384

View: 4971

This book provides a concise introduction to numerical concepts in engineering analysis, using FORTRAN, QuickBASIC, MATLAB, and Mathematica to illustrate the examples. Discussions include: matrix algebra and analysis solution of matrix equations methods of curve fit methods for finding the roots of polynomials and transcendental equations finite differences and methods for interpolation and numerical differentiation numerical computation of single and double integrals numerical solution of ordinary differential equations Engineering Analysis: teaches readers to become proficient in FORTRAN or QuickBASIC programming to solve engineering problems provides an introduction to MATLAB and Mathematica, enabling readers to write supplementary m-files for MATLAB and toolkits for Mathematica using C-like commands The book emphasizes interactive operation in developing computer programs throughout, enabling the values of the parameters involved in the problem to be entered by the user of the program via a keyboard. In introducing each numerical method, Engineering Analysis gives minimum mathematical derivations but provides a thorough explanation of computational procedures to solve a specific problem. It serves as an exceptional text for self-study as well as resource for general reference.
Read More

An Introduction to Numerical Methods

Author: Gene H. Golub,James M. Ortega

Publisher: Elsevier

ISBN: 0080516696

Category: Mathematics

Page: 344

View: 4101

Scientific Computing and Differential Equations: An Introduction to Numerical Methods, is an excellent complement to Introduction to Numerical Methods by Ortega and Poole. The book emphasizes the importance of solving differential equations on a computer, which comprises a large part of what has come to be called scientific computing. It reviews modern scientific computing, outlines its applications, and places the subject in a larger context. This book is appropriate for upper undergraduate courses in mathematics, electrical engineering, and computer science; it is also well-suited to serve as a textbook for numerical differential equations courses at the graduate level. An introductory chapter gives an overview of scientific computing, indicating its important role in solving differential equations, and placing the subject in the larger environment Contains an introduction to numerical methods for both ordinary and partial differential equations Concentrates on ordinary differential equations, especially boundary-value problems Contains most of the main topics for a first course in numerical methods, and can serve as a text for this course Uses material for junior/senior level undergraduate courses in math and computer science plus material for numerical differential equations courses for engineering/science students at the graduate level
Read More

Author: Timmy Siauw,Alexandre Bayen

Publisher: Academic Press

ISBN: 0127999140

Category: Computers

Page: 340

View: 7275

Assuming no prior background in linear algebra or real analysis, An Introduction to MATLAB® Programming and Numerical Methods for Engineers enables you to develop good computational problem solving techniques through the use of numerical methods and the MATLAB® programming environment. Part One introduces fundamental programming concepts, using simple examples to put new concepts quickly into practice. Part Two covers the fundamentals of algorithms and numerical analysis at a level allowing you to quickly apply results in practical settings. Tips, warnings, and "try this" features within each chapter help the reader develop good programming practices Chapter summaries, key terms, and functions and operators lists at the end of each chapter allow for quick access to important information At least three different types of end of chapter exercises — thinking, writing, and coding — let you assess your understanding and practice what you've learned
Read More