Author: Peter J. Olver

Publisher: Springer Science & Business Media

ISBN: 1468402749

Category: Mathematics

Page: 497

View: 2841

This book is devoted to explaining a wide range of applications of con tinuous symmetry groups to physically important systems of differential equations. Emphasis is placed on significant applications of group-theoretic methods, organized so that the applied reader can readily learn the basic computational techniques required for genuine physical problems. The first chapter collects together (but does not prove) those aspects of Lie group theory which are of importance to differential equations. Applications covered in the body of the book include calculation of symmetry groups of differential equations, integration of ordinary differential equations, including special techniques for Euler-Lagrange equations or Hamiltonian systems, differential invariants and construction of equations with pre scribed symmetry groups, group-invariant solutions of partial differential equations, dimensional analysis, and the connections between conservation laws and symmetry groups. Generalizations of the basic symmetry group concept, and applications to conservation laws, integrability conditions, completely integrable systems and soliton equations, and bi-Hamiltonian systems are covered in detail. The exposition is reasonably self-contained, and supplemented by numerous examples of direct physical importance, chosen from classical mechanics, fluid mechanics, elasticity and other applied areas.
Read More

Author: Sophus Lie,Georg Scheffers

Publisher: American Mathematical Soc.

ISBN: 9780821837795

Category: Mathematics

Page: 693

View: 2161

The Geometry of Contact Transformation, Sophus Lie's final work.
Read More

Author: Ercüment Ortaçgil

Publisher: Oxford University Press

ISBN: 0192554840

Category: Mathematics

Page: 240

View: 3450

This book presents a new and innovative approach to Lie groups and differential geometry. Rather than compiling and reviewing the existing material on this classical subject, Professor Ortaçgil instead questions the foundations of the subject, and proposes a new direction. Aimed at the curious and courageous mathematician, this book aims to provoke further debate and inspire further development of this original research.
Read More

Author: Daniel Zwillinger

Publisher: Academic Press

ISBN: 1483263967

Category: Mathematics

Page: 808

View: 6195

Handbook of Differential Equations, Second Edition is a handy reference to many popular techniques for solving and approximating differential equations, including numerical methods and exact and approximate analytical methods. Topics covered range from transformations and constant coefficient linear equations to Picard iteration, along with conformal mappings and inverse scattering. Comprised of 192 chapters, this book begins with an introduction to transformations as well as general ideas about differential equations and how they are solved, together with the techniques needed to determine if a partial differential equation is well-posed or what the "natural" boundary conditions are. Subsequent sections focus on exact and approximate analytical solution techniques for differential equations, along with numerical methods for ordinary and partial differential equations. This monograph is intended for students taking courses in differential equations at either the undergraduate or graduate level, and should also be useful for practicing engineers or scientists who solve differential equations on an occasional basis.
Read More

Advances and Surveys

Author: Giovanni Falcone

Publisher: Springer

ISBN: 3319621815

Category: Mathematics

Page: 361

View: 9648

This book collects a series of contributions addressing the various contexts in which the theory of Lie groups is applied. A preliminary chapter serves the reader both as a basic reference source and as an ongoing thread that runs through the subsequent chapters. From representation theory and Gerstenhaber algebras to control theory, from differential equations to Finsler geometry and Lepage manifolds, the book introduces young researchers in Mathematics to a wealth of different topics, encouraging a multidisciplinary approach to research. As such, it is suitable for students in doctoral courses, and will also benefit researchers who want to expand their field of interest.
Read More

Eine Einführung

Author: Walter A. Strauss

Publisher: Springer-Verlag

ISBN: 366312486X

Category: Mathematics

Page: 458

View: 7759

Dieses Buch ist eine umfassende Einführung in die klassischen Lösungsmethoden partieller Differentialgleichungen. Es wendet sich an Leser mit Kenntnissen aus einem viersemestrigen Grundstudium der Mathematik (und Physik) und legt seinen Schwerpunkt auf die explizite Darstellung der Lösungen. Es ist deshalb besonders auch für Anwender (Physiker, Ingenieure) sowie für Nichtspezialisten, die die Methoden der mathematischen Physik kennenlernen wollen, interessant. Durch die große Anzahl von Beispielen und Übungsaufgaben eignet es sich gut zum Gebrauch neben Vorlesungen sowie zum Selbststudium.
Read More

Author: Carmen Chicone

Publisher: Springer Science & Business Media

ISBN: 9780387985350

Category: Mathematics

Page: 561

View: 9925

This graduate-level textbook offers students a rapid introduction to the language of ordinary differential equations followed by a careful treatment of the central topics of the qualitative theory. In addition, special attention is given to the origins and applications of differential equations in physical science and engineering.
Read More

Author: Eugene Paul Wigner

Publisher: Springer-Verlag

ISBN: 3663025551

Category: Mathematics

Page: 332

View: 7928

Dieser Buchtitel ist Teil des Digitalisierungsprojekts Springer Book Archives mit Publikationen, die seit den Anfängen des Verlags von 1842 erschienen sind. Der Verlag stellt mit diesem Archiv Quellen für die historische wie auch die disziplingeschichtliche Forschung zur Verfügung, die jeweils im historischen Kontext betrachtet werden müssen. Dieser Titel erschien in der Zeit vor 1945 und wird daher in seiner zeittypischen politisch-ideologischen Ausrichtung vom Verlag nicht beworben.
Read More

Author: Peter J. Olver

Publisher: Springer Science & Business Media

ISBN: 3319020994

Category: Mathematics

Page: 636

View: 327

This textbook is designed for a one year course covering the fundamentals of partial differential equations, geared towards advanced undergraduates and beginning graduate students in mathematics, science, engineering, and elsewhere. The exposition carefully balances solution techniques, mathematical rigor, and significant applications, all illustrated by numerous examples. Extensive exercise sets appear at the end of almost every subsection, and include straightforward computational problems to develop and reinforce new techniques and results, details on theoretical developments and proofs, challenging projects both computational and conceptual, and supplementary material that motivates the student to delve further into the subject. No previous experience with the subject of partial differential equations or Fourier theory is assumed, the main prerequisites being undergraduate calculus, both one- and multi-variable, ordinary differential equations, and basic linear algebra. While the classical topics of separation of variables, Fourier analysis, boundary value problems, Green's functions, and special functions continue to form the core of an introductory course, the inclusion of nonlinear equations, shock wave dynamics, symmetry and similarity, the Maximum Principle, financial models, dispersion and solutions, Huygens' Principle, quantum mechanical systems, and more make this text well attuned to recent developments and trends in this active field of contemporary research. Numerical approximation schemes are an important component of any introductory course, and the text covers the two most basic approaches: finite differences and finite elements.
Read More

Author: Vladimir I. Arnold

Publisher: Springer-Verlag

ISBN: 3540350314

Category: Mathematics

Page: 174

View: 3058

Nach seinem bekannten und viel verwendeten Buch über gewöhnliche Differentialgleichungen widmet sich der berühmte Mathematiker Vladimir Arnold nun den partiellen Differentialgleichungen in einem neuen Lehrbuch. In seiner unnachahmlich eleganten Art führt er über einen geometrischen, anschaulichen Weg in das Thema ein, und ermöglicht den Lesern so ein vertieftes Verständnis der Natur der partiellen Differentialgleichungen. Für Studierende der Mathematik und Physik ist dieses Buch ein Muss. Wie alle Bücher Vladimir Arnolds ist dieses Buch voller geometrischer Erkenntnisse. Arnold illustriert jeden Grundsatz mit einer Abbildung. Das Buch behandelt die elementarsten Teile des Fachgebiets and beschränkt sich hauptsächlich auf das Cauchy-Problem und das Neumann-Problems für die klassischen Lineargleichungen der mathematischen Physik, insbesondere auf die Laplace-Gleichung und die Wellengleichung, wobei die Wärmeleitungsgleichung und die Korteweg-de-Vries-Gleichung aber ebenfalls diskutiert werden. Die physikalische Intuition wird besonders hervorgehoben. Eine große Anzahl von Problemen ist übers ganze Buch verteilt, und ein ganzer Satz von Aufgaben findet sich am Ende. Was dieses Buch so einzigartig macht, ist das besondere Talent Arnolds, ein Thema aus einer neuen, frischen Perspektive zu beleuchten. Er lüftet gerne den Schleier der Verallgemeinerung, der so viele mathematische Texte umgibt, und enthüllt die im wesentlichen einfachen, intuitiven Ideen, die dem Thema zugrunde liegen. Das kann er besser als jeder andere mathematische Autor.
Read More

An Introduction Through Linear Groups

Author: Wulf Rossmann

Publisher: Oxford University Press on Demand

ISBN: 9780199202515

Category: Mathematics

Page: 265

View: 8499

Lie Groups is intended as an introduction to the theory of Lie groups and their representations at the advanced undergraduate or beginning graduate level. It covers the essentials of the subject starting from basic undergraduate mathematics. The correspondence between linear Lie groups and Lie algebras is developed in its local and global aspects. The classical groups are analysed in detail, first with elementary matrix methods, then with the help of the structural tools typical of thetheory of semisimple groups, such as Cartan subgroups, roots, weights, and reflections. The fundamental groups of the classical groups are worked out as an application of these methods. Manifolds are introduced when needed, in connection with homogeneous spaces, and the elements of differential and integral calculus on manifolds are presented, with special emphasis on integration on groups and homogeneous spaces. Representation theory starts from first principles, such as Schur's lemma and its consequences, and proceeds from there to the Peter-Weyl theorem, Weyl's character formula, and the Borel-Weil theorem, all in the context of linear groups.
Read More

Author: George Emanuel

Publisher: CRC Press

ISBN: 9781584882435

Category: Mathematics

Page: 232

View: 4455

Written by an engineer and sharply focused on practical matters, this text explores the application of Lie groups to solving ordinary differential equations (ODEs). Although the mathematical proofs and derivations in are de-emphasized in favor of problem solving, the author retains the conceptual basis of continuous groups and relates the theory to problems in engineering and the sciences. The author has developed a number of new techniques that are published here for the first time, including the important and useful enlargement procedure. The author also introduces a new way of organizing tables reminiscent of that used for integral tables. These new methods and the unique organizational scheme allow a significant increase in the number of ODEs amenable to group-theory solution. Solution of Ordinary Differential Equations by Continuous Groups offers a self-contained treatment that presumes only a rudimentary exposure to ordinary differential equations. Replete with fully worked examples, it is the ideal self-study vehicle for upper division and graduate students and professionals in applied mathematics, engineering, and the sciences.
Read More

Author: Steven Holzner

Publisher: John Wiley & Sons

ISBN: 3527658041

Category: Mathematics

Page: 327

View: 7657

Als die Gute Fee H?nschen fragte: "was w?nschst Du dir?", antwortete er: "Keine Differentialgleichungen mehr in der Schule": Hans im Gl?ck! Jetzt k?nnen Sie auch auf eine Gute Fee warten, oder sich dieses Buch kaufen. Sie finden hier Hilfe sollten Sie mit linearen und nichtlinearen gew?hnlichen Differentialgleichungen ihre liebe M?he haben, seien sie nun erster, zweiter oder h?herer Ordnung. Sie lernen auch, was Sie zu Laplace Transformation, Potenzreihen und vielen anderen vertrackten Problemen wissen sollten. Sehen Sie der Realit?t ins Auge, mit diesem Buch.
Read More

Author: Franz D. Fischer,Erich Schmid

Publisher: Springer Science & Business Media

ISBN: 3211274049

Category: Technology & Engineering

Page: 256

View: 8792

Moving Interfaces in Solids are typically phase boundaries and grain or subgrain boundaries. Continuum thermodynamics and continuum mechanics are applied to explain the motion process. Related numerical and experimental concepts are dealt with. Experts from material physics and mechanics bridge the gap between these fields. The reader is offered a common view of interface mtion in a unique representation. Examples are presented for various material systems.
Read More

An Introduction for Physicists, Engineers and Chemists

Author: Robert Gilmore

Publisher: Cambridge University Press

ISBN: 113946907X

Category: Science

Page: N.A

View: 7513

Describing many of the most important aspects of Lie group theory, this book presents the subject in a 'hands on' way. Rather than concentrating on theorems and proofs, the book shows the applications of the material to physical sciences and applied mathematics. Many examples of Lie groups and Lie algebras are given throughout the text. The relation between Lie group theory and algorithms for solving ordinary differential equations is presented and shown to be analogous to the relation between Galois groups and algorithms for solving polynomial equations. Other chapters are devoted to differential geometry, relativity, electrodynamics, and the hydrogen atom. Problems are given at the end of each chapter so readers can monitor their understanding of the materials. This is a fascinating introduction to Lie groups for graduate and undergraduate students in physics, mathematics and electrical engineering, as well as researchers in these fields.
Read More