Author: Richard Arnold Johnson,Dean W. Wichern

Publisher: N.A

ISBN: 9781292024943

Category: Mathematical analysis

Page: 776

View: 9208

This market leader offers a readable introduction to the statistical analysis of multivariate observations. Gives readers the knowledge necessary to make proper interpretations and select appropriate techniques for analyzing multivariate data. Starts with a formulation of the population models, delineates the corresponding sample results, and liberally illustrates everything with examples. Offers an abundance of examples and exercises based on real data. Appropriate for experimental scientists in a variety of disciplines.
Read More

Author: Richard A. Johnson,Richard Arnold Johnson,Dean W. Wichern

Publisher: N.A

ISBN: N.A

Category: Analyse multivariée

Page: 642

View: 8047

Explores the statistical methods for describing and analyzing multivariate data. It's goal is to provide readers with the knowledge necessary to make proper interpretations, and select appropriate techniques for analyzing multivariate data Coverage includes: Detecting Outliers and Data Cleaning; Multivariate Quality Control; Monitoring Quality with Principal Components; and Correspondence Analysis, Biplots, and Procrustes Analysis.
Read More

Author: Wolfgang Karl Härdle,Léopold Simar

Publisher: Springer

ISBN: 3662451719

Category: Business & Economics

Page: 580

View: 8548

Focusing on high-dimensional applications, this 4th edition presents the tools and concepts used in multivariate data analysis in a style that is also accessible for non-mathematicians and practitioners. All chapters include practical exercises that highlight applications in different multivariate data analysis fields. All of the examples involve high to ultra-high dimensions and represent a number of major fields in big data analysis. The fourth edition of this book on Applied Multivariate Statistical Analysis offers the following new features: A new chapter on Variable Selection (Lasso, SCAD and Elastic Net) All exercises are supplemented by R and MATLAB code that can be found on www.quantlet.de. The practical exercises include solutions that can be found in Härdle, W. and Hlavka, Z., Multivariate Statistics: Exercises and Solutions. Springer Verlag, Heidelberg.
Read More

Author: Wolfgang Härdle,Léopold Simar

Publisher: Springer Science & Business Media

ISBN: 3540722432

Category: Business & Economics

Page: 458

View: 9039

With a wealth of examples and exercises, this is a brand new edition of a classic work on multivariate data analysis. A key advantage of the work is its accessibility as it presents tools and concepts in a way that is understandable for non-mathematicians.
Read More

Author: James Paul Stevens

Publisher: Taylor & Francis

ISBN: 0805859012

Category: Social Science

Page: 651

View: 589

This best-selling text is written for those who use, rather than develop statistical methods. Dr. Stevens focuses on a conceptual understanding of the material rather than on proving results. Helpful narrative and numerous examples enhance understanding and a chapter on matrix algebra serves as a review. Annotated printouts from SPSS and SAS indicate what the numbers mean and encourage interpretation of the results. In addition to demonstrating how to use these packages, the author stresses the importance of checking the data, assessing the assumptions, and ensuring adequate sample size by providing guidelines so that the results can be generalized. The book is noted for its extensive applied coverage of MANOVA, its emphasis on statistical power, and numerous exercises including answers to half. The new edition features: New chapters on Hierarchical Linear Modeling (Ch. 15) and Structural Equation Modeling (Ch. 16) New exercises that feature recent journal articles to demonstrate the actual use of multiple regression (Ch. 3), MANOVA (Ch. 5), and repeated measures (Ch. 13) A new appendix on the analysis of correlated observations (Ch. 6) Expanded discussions on obtaining non-orthogonal contrasts in repeated measures designs with SPSS and how to make the identification of cell ID easier in log linear analysis in 4 or 5 way designs Updated versions of SPSS (15.0) and SAS (8.0) are used throughout the text and introduced in chapter 1 A book website with data sets and more. Ideal for courses on multivariate statistics found in psychology, education, sociology, and business departments, the book also appeals to practicing researchers with little or no training in multivariate methods. Prerequisites include a course on factorial ANOVA and covariance. Working knowledge of matrix algebra is not assumed.
Read More

Author: Mercedes Orús Lacort

Publisher: Lulu.com

ISBN: 1291886109

Category: Technology & Engineering

Page: 124

View: 1382

Applied Multivariate Statistical Analysis, is a book that is intended for university students of any college. You'll find theory as summaries, and exercises solved, on the following topics: Multiple Linear Regression, Principal Component Analysis (without and with Varimax rotation), Analysis of Hierarchical Cluster, Discriminant Analysis, and Single and Multiple Correspondence Analysis. The Minitab Statistical package, have been used in the resolution of problems.
Read More

Author: Howard E.A. Tinsley,Steven D. Brown

Publisher: Academic Press

ISBN: 9780080533568

Category: Mathematics

Page: 721

View: 6822

Multivariate statistics and mathematical models provide flexible and powerful tools essential in most disciplines. Nevertheless, many practicing researchers lack an adequate knowledge of these techniques, or did once know the techniques, but have not been able to keep abreast of new developments. The Handbook of Applied Multivariate Statistics and Mathematical Modeling explains the appropriate uses of multivariate procedures and mathematical modeling techniques, and prescribe practices that enable applied researchers to use these procedures effectively without needing to concern themselves with the mathematical basis. The Handbook emphasizes using models and statistics as tools. The objective of the book is to inform readers about which tool to use to accomplish which task. Each chapter begins with a discussion of what kinds of questions a particular technique can and cannot answer. As multivariate statistics and modeling techniques are useful across disciplines, these examples include issues of concern in biological and social sciences as well as the humanities.
Read More

Author: Debbie L. Hahs-Vaughn

Publisher: Taylor & Francis

ISBN: 1317811372

Category: Psychology

Page: 648

View: 3505

More comprehensive than other texts, this new book covers the classic and cutting edge multivariate techniques used in today’s research. Ideal for courses on multivariate statistics/analysis/design, advanced statistics or quantitative techniques taught in psychology, education, sociology, and business, the book also appeals to researchers with no training in multivariate methods. Through clear writing and engaging pedagogy and examples using real data, Hahs-Vaughn walks students through the most used methods to learn why and how to apply each technique. A conceptual approach with a higher than usual text-to-formula ratio helps reader’s master key concepts so they can implement and interpret results generated by today’s sophisticated software. Annotated screenshots from SPSS and other packages are integrated throughout. Designed for course flexibility, after the first 4 chapters, instructors can use chapters in any sequence or combination to fit the needs of their students. Each chapter includes a ‘mathematical snapshot’ that highlights the technical components of each procedure, so only the most crucial equations are included. Highlights include: -Outlines, key concepts, and vignettes related to key concepts preview what’s to come in each chapter -Examples using real data from education, psychology, and other social sciences illustrate key concepts -Extensive coverage of assumptions including tables, the effects of their violation, and how to test for each technique -Conceptual, computational, and interpretative problems mirror the real-world problems students encounter in their studies and careers -A focus on data screening and power analysis with attention on the special needs of each particular method -Instructions for using SPSS via screenshots and annotated output along with HLM, Mplus, LISREL, and G*Power where appropriate, to demonstrate how to interpret results -Templates for writing research questions and APA-style write-ups of results which serve as models -Propensity score analysis chapter that demonstrates the use of this increasingly popular technique -A review of matrix algebra for those who want an introduction (prerequisites include an introduction to factorial ANOVA, ANCOVA, and simple linear regression, but knowledge of matrix algebra is not assumed) -www.routledge.com/9780415842365 provides the text’s datasets preformatted for use in SPSS and other statistical packages for readers, as well as answers to all chapter problems, Power Points, and test items for instructors
Read More

Author: James P. Stevens

Publisher: Routledge

ISBN: 1136910697

Category: Education

Page: 664

View: 1047

This best-selling text is written for those who use, rather than develop statistical methods. Dr. Stevens focuses on a conceptual understanding of the material rather than on proving results. Helpful narrative and numerous examples enhance understanding and a chapter on matrix algebra serves as a review. Annotated printouts from SPSS and SAS indicate what the numbers mean and encourage interpretation of the results. In addition to demonstrating how to use these packages, the author stresses the importance of checking the data, assessing the assumptions, and ensuring adequate sample size by providing guidelines so that the results can be generalized. The book is noted for its extensive applied coverage of MANOVA, its emphasis on statistical power, and numerous exercises including answers to half. The new edition features: New chapters on Hierarchical Linear Modeling (Ch. 15) and Structural Equation Modeling (Ch. 16) New exercises that feature recent journal articles to demonstrate the actual use of multiple regression (Ch. 3), MANOVA (Ch. 5), and repeated measures (Ch. 13) A new appendix on the analysis of correlated observations (Ch. 6) Expanded discussions on obtaining non-orthogonal contrasts in repeated measures designs with SPSS and how to make the identification of cell ID easier in log linear analysis in 4 or 5 way designs Updated versions of SPSS (15.0) and SAS (8.0) are used throughout the text and introduced in chapter 1 A book website with data sets and more. Ideal for courses on multivariate statistics found in psychology, education, sociology, and business departments, the book also appeals to practicing researchers with little or no training in multivariate methods. Prerequisites include a course on factorial ANOVA and covariance. Working knowledge of matrix algebra is not assumed.
Read More

Author: D. M. Hawkins

Publisher: Cambridge University Press

ISBN: 9780521243681

Category: Mathematics

Page: 362

View: 3526

Multivariate methods are employed widely in the analysis of experimental data but are poorly understood by those users who are not statisticians. This is because of the wide divergence between the theory and practice of multivariate methods. This book provides concise yet thorough surveys of developments in multivariate statistical analysis and gives statistically sound coverage of the subject. The contributors are all experienced in the theory and practice of multivariate methods and their aim has been to emphasize the major features from the point of view of applicability and to indicate the limitations and conditions of the techniques. Professional statisticians wanting to improve their background in applicable methods, users of high-level statistical methods wanting to improve their background in fundamentals, and graduate students of statistics will all find this volume of value and use.
Read More

Author: Richard A. Johnson,Dean W. Wichern

Publisher: Pearson

ISBN: 9780134995397

Category: Multivariate analysis

Page: 804

View: 5932

For courses in Multivariate Statistics, Marketing Research, Intermediate Business Statistics, Statistics in Education, and graduate-level courses in Experimental Design and Statistics. Appropriate for experimental scientists in a variety of disciplines, this market-leading text offers a readable introduction to the statistical analysis of multivariate observations. Its primary goal is to impart the knowledge necessary to make proper interpretations and select appropriate techniques for analyzing multivariate data. Ideal for a junior/senior or graduate level course that explores the statistical methods for describing and analyzing multivariate data, the text assumes two or more statistics courses as a prerequisite.
Read More

A High-Dimensional Approach

Author: V.I. Serdobolskii

Publisher: Springer Science & Business Media

ISBN: 9401594686

Category: Mathematics

Page: 244

View: 5181

Multivariate Statistical Analysis
Read More

Author: Neil H. Timm

Publisher: Springer Science & Business Media

ISBN: 0387953477

Category: Mathematics

Page: 695

View: 3979

This book provides a broad overview of the basic theory and methods of applied multivariate analysis. The presentation integrates both theory and practice including both the analysis of formal linear multivariate models and exploratory data analysis techniques. Each chapter contains the development of basic theoretical results with numerous applications illustrated using examples from the social and behavioral sciences, and other disciplines. All examples are analyzed using SAS for Windows Version 8.0.
Read More

Author: Daniel Zelterman

Publisher: Springer

ISBN: 3319140930

Category: Medical

Page: 393

View: 1104

This book brings the power of multivariate statistics to graduate-level practitioners, making these analytical methods accessible without lengthy mathematical derivations. Using the open source, shareware program R, Professor Zelterman demonstrates the process and outcomes for a wide array of multivariate statistical applications. Chapters cover graphical displays, linear algebra, univariate, bivariate and multivariate normal distributions, factor methods, linear regression, discrimination and classification, clustering, time series models, and additional methods. Zelterman uses practical examples from diverse disciplines to welcome readers from a variety of academic specialties. Those with backgrounds in statistics will learn new methods while they review more familiar topics. Chapters include exercises, real data sets, and R implementations. The data are interesting, real-world topics, particularly from health and biology-related contexts. As an example of the approach, the text examines a sample from the Behavior Risk Factor Surveillance System, discussing both the shortcomings of the data as well as useful analyses. The text avoids theoretical derivations beyond those needed to fully appreciate the methods. Prior experience with R is not necessary.
Read More

Author: James Stevens

Publisher: Lawrence Erlbaum Assoc Inc

ISBN: 9780805811544

Category: Social Science

Page: 629

View: 6909

This book was written for those who will be using, rather than developing, advanced statistical methods. It focuses on a conceptual understanding of the material rather than proving results. It is a graduate level textbook with abundant examples.
Read More

Analyses with SAS and IBM’s SPSS, Sixth Edition

Author: Keenan A. Pituch,James P. Stevens

Publisher: Routledge

ISBN: 1317805917

Category: Psychology

Page: 814

View: 4507

Now in its 6th edition, the authoritative textbook Applied Multivariate Statistics for the Social Sciences, continues to provide advanced students with a practical and conceptual understanding of statistical procedures through examples and data-sets from actual research studies. With the added expertise of co-author Keenan Pituch (University of Texas-Austin), this 6th edition retains many key features of the previous editions, including its breadth and depth of coverage, a review chapter on matrix algebra, applied coverage of MANOVA, and emphasis on statistical power. In this new edition, the authors continue to provide practical guidelines for checking the data, assessing assumptions, interpreting, and reporting the results to help students analyze data from their own research confidently and professionally. Features new to this edition include: NEW chapter on Logistic Regression (Ch. 11) that helps readers understand and use this very flexible and widely used procedure NEW chapter on Multivariate Multilevel Modeling (Ch. 14) that helps readers understand the benefits of this "newer" procedure and how it can be used in conventional and multilevel settings NEW Example Results Section write-ups that illustrate how results should be presented in research papers and journal articles NEW coverage of missing data (Ch. 1) to help students understand and address problems associated with incomplete data Completely re-written chapters on Exploratory Factor Analysis (Ch. 9), Hierarchical Linear Modeling (Ch. 13), and Structural Equation Modeling (Ch. 16) with increased focus on understanding models and interpreting results NEW analysis summaries, inclusion of more syntax explanations, and reduction in the number of SPSS/SAS dialogue boxes to guide students through data analysis in a more streamlined and direct approach Updated syntax to reflect newest versions of IBM SPSS (21) /SAS (9.3) A free online resources site at www.routledge.com/9780415836661 with data sets and syntax from the text, additional data sets, and instructor’s resources (including PowerPoint lecture slides for select chapters, a conversion guide for 5th edition adopters, and answers to exercises). Ideal for advanced graduate-level courses in education, psychology, and other social sciences in which multivariate statistics, advanced statistics, or quantitative techniques courses are taught, this book also appeals to practicing researchers as a valuable reference. Pre-requisites include a course on factorial ANOVA and covariance; however, a working knowledge of matrix algebra is not assumed.
Read More

Author: Charles E. Brown

Publisher: Springer Science & Business Media

ISBN: 3642803288

Category: Science

Page: 248

View: 1264

It has been evident from many years of research work in the geohydrologic sciences that a summary of relevant past work, present work, and needed future work in multivariate statistics with geohydrologic applications is not only desirable, but is necessary. This book is intended to serve a broad scientific audience, but more specifi cally is geared toward scientists doing studies in geohydrology and related geo sciences.lts objective is to address both introductory and advanced concepts and applications of the multivariate procedures in use today. Some of the procedures are classical in scope but others are on the forefront of statistical science and have received limited use in geohydrology or related sciences. The past three decades have seen a significant jump in the application of new research methodologies that focus on analyzing large databases. With more general applications being developed by statisticians in various disciplines, multivariate quantitative procedures are evolving for better scientific applica tion at a rapid rate and now provide for quick and informative analyses of large datasets. The procedures include a family of statistical research methods that are alternatively called "multivariate analysis" or "multivariate statistical methods".
Read More

Elemente der Funktionentheorie

Author: Wolfgang Fischer,Ingo Lieb

Publisher: Springer-Verlag

ISBN: 3834893773

Category: Mathematics

Page: 214

View: 1479

In den Bachelor-Studiengängen der Mathematik steht für die Komplexe Analysis (Funktionentheorie) oft nur eine einsemestrige 2-stündige Vorlesung zur Verfügung. Dieses Buch eignet sich als Grundlage für eine solche Vorlesung im 2. Studienjahr. Mit einer guten thematischen Auswahl, vielen Beispielen und ausführlichen Erläuterungen gibt dieses Buch eine Darstellung der Komplexen Analysis, die genau die Grundlagen und den wesentlichen Kernbestand dieses Gebietes enthält. Das Buch bietet über diese Grundausbildung hinaus weiteres Lehrmaterial als Ergänzung, sodass es auch für eine 3- oder 4 –stündige Vorlesung geeignet ist. Je nach Hörerkreis kann der Stoff unterschiedlich erweitert werden. So wurden für den „Bachelor Lehramt“ die geometrischen Aspekte der Komplexen Analysis besonders herausgearbeitet.
Read More

Author: Ravindra Khattree,Dayanand N. Naik

Publisher: SAS Institute

ISBN: 9781590476390

Category: Computers

Page: 368

View: 2736

The authors' approach to the information aids professors, researchers, and students in a variety of disciplines and industries. Extensive SAS code and the corresponding output accompany sample problems, and clear explanations of the various SAS procedures are included. Emphasis is on correct interpretation of the output to draw meaningful conclusions. Featuring both the theoretical and the practical, topics covered include multivariate analysis of experimental data and repeated measures data, graphical representation of data including biplots, and multivariate regression. In addition, a quick introduction to the IML procedure with special reference to multivariate data is available in an appendix. SAS programs and output integrated with the text make it easy to read and follow the examples. High-resolution graphs have been used in this new edition.
Read More

Design and Interpretation

Author: Lawrence S. Meyers,Glenn Gamst,A.J. Guarino

Publisher: SAGE

ISBN: 141298811X

Category: Psychology

Page: 1078

View: 7076

This book provides full coverage of the wide range of multivariate topics that graduate students across the social and behavioral sciences encounter, using a conceptual, non-mathematical, approach. Addressing correlation, multiple regression, exploratory factor analysis, MANOVA, path analysis, and structural equation modeling, it is geared toward the needs, level of sophistication, and interest in multivariate methodology that serves students in applied programs in the social and behavioral sciences. Readers are encouraged to focus on design and interpretation rather than the intricacies of specific computations.
Read More