Boolean-Valued Models and Independence Proofs

Author: John L. Bell

Publisher: Oxford University Press

ISBN: 0199609160

Category: Computers

Page: 216

View: 9076

This third edition, now available in paperback, is a follow up to the author's classic Boolean-Valued Models and Independence Proofs in Set Theory,. It provides an exposition of some of the most important results in set theory obtained in the 20th century: the independence of the continuum hypothesis and the axiom of choice. Aimed at graduate students and researchers in mathematics, mathematical logic, philosophy, and computer science, the third edition has been extensively updated with expanded introductory material, new chapters, and a new appendix on category theory. It covers recent developments in the field and contains numerous exercises, along with updated and increased coverage of the background material. This new paperback edition includes additional corrections and, for the first time, will make this landmark text accessible to students in logic and set theory.
Read More

Author: John L. Bell

Publisher: Clarendon Press

ISBN: 9780191620829

Category: Philosophy

Page: 216

View: 3874

This monograph is a follow up to the author's classic text Boolean-Valued Models and Independence Proofs in Set Theory, providing an exposition of some of the most important results in set theory obtained in the 20th century--the independence of the continuum hypothesis and the axiom of choice. Aimed at research students and academics in mathematics, mathematical logic, philosophy, and computer science, the text has been extensively updated with expanded introductory material, new chapters, and a new appendix on category theory, and includes recent developments in the field. Numerous exercises, along with the enlarged and entirely updated background material, make this an ideal text for students in logic and set theory.
Read More

Eine Reise durch die Kerngebiete der mathematischen Logik

Author: Dirk W. Hoffmann

Publisher: Springer-Verlag

ISBN: 3662566176

Category: Mathematics

Page: 441

View: 9002

Ist die Mathematik frei von Widersprüchen? Gibt es Wahrheiten jenseits des Beweisbaren? Ist es möglich, unser mathematisches Wissen in eine einzige Zahl hineinzucodieren? Die moderne mathematische Logik des zwanzigsten Jahrhunderts gibt verblüffende Antworten auf solche Fragen. Das vorliegende Buch entführt Sie auf eine Reise durch die Kerngebiete der mathematischen Logik, hin zu den Grenzen der Mathematik. Unter anderem werden die folgenden Themen behandelt: Geschichte der mathematischen Logik, formale Systeme, axiomatische Zahlentheorie und Mengenlehre, Beweistheorie, die Gödel‘schen Unvollständigkeitssätze, Berechenbarkeitstheorie, algorithmische Informationstheorie, Modelltheorie. Das Buch enthält zahlreiche zweifarbige Abbildungen und mehr als 70 Aufgaben (mit Lösungen auf der Website zum Buch). Für die dritte Auflage wurde das Kapitel ‚Modelltheorie‘ um eine Beschreibung der von Paul Cohen entwickelten Forcing-Technik ergänzt.
Read More

Essays in Honour of John L. Bell

Author: David DeVidi,Michael Hallett,Peter Clark

Publisher: Springer Science & Business Media

ISBN: 9789400702141

Category: Philosophy

Page: 486

View: 9186

The volume includes twenty-five research papers presented as gifts to John L. Bell to celebrate his 60th birthday by colleagues, former students, friends and admirers. Like Bell’s own work, the contributions cross boundaries into several inter-related fields. The contributions are new work by highly respected figures, several of whom are among the key figures in their fields. Some examples: in foundations of maths and logic (William Lawvere, Peter Aczel, Graham Priest, Giovanni Sambin); analytical philosophy (Michael Dummett, William Demopoulos), philosophy of science (Michael Redhead, Frank Arntzenius), philosophy of mathematics (Michael Hallett, John Mayberry, Daniel Isaacson) and decision theory and foundations of economics (Ken Bimore). Most articles are contributions to current philosophical debates, but contributions also include some new mathematical results, important historical surveys, and a translation by Wilfrid Hodges of a key work of arabic logic.
Read More

Eine Einführung in die Mathematik der Unabhängigkeitsbeweise

Author: Dirk Hoffmann

Publisher: BoD – Books on Demand

ISBN: 374604460X

Category: Mathematics

Page: 432

View: 1719

Bis in das 20. Jahrhundert hinein war es eine unausgesprochene Grundannahme der Mathematik, dass zwischen der Wahrheit und der Beweisbarkeit einer Aussage nicht unterschieden werden muss. Heute wissen wir, dass diese Sichtweise falsch ist. Es gibt Aussagen, die mit den Mitteln der gewöhnlichen Mathematik weder bewiesen noch widerlegt werden können. Eine solche Aussage ist die Kontinuumshypothese, mit der Georg Cantor Ende des 19. Jahrhunderts ein Jahrhunderträtsel schuf. Die Unentscheidbarkeit der Kontinuumshypothese wurde im Jahr 1963 von Paul Cohen gezeigt, mit einer völlig neuen, als Forcing bezeichneten Beweistechnik. Seitdem haben wir ein mächtiges Beweisinstrument in den Händen, mit dem sich nicht nur die Kontinuumshypothese, sondern auch zahlreiche andere mathematische Aussagen, wie z. B. das Auswahlaxiom, als unentscheidbar identifizieren lassen. Das vorliegende Buch ist eine Einführung in die Forcing-Technik, die den Leser in die Lage versetzen soll, die bestehende Literatur zu diesem Thema leichter zu verstehen. Cohens Beweismethode wird Schritt für Schritt entwickelt und anschließend dazu verwendet, um die Unentscheidbarkeit der Kontinuumshypothese zu belegen. Geschrieben habe ich dieses Buch für Leser, die bereits über fundierte mathematische Kenntnisse verfügen, aber keine Experten im Bereich der Mengenlehre oder Logik sind. Das Buch kann unabhängig von Vorlesungen auch zum Selbststudium genutzt werden. Alle Kapitel sind mit zahlreichen Übungsaufgaben versehen, deren Lösungen im Internet abgerufen werden können.
Read More

Author: N.A

Publisher: N.A

ISBN: N.A

Category: Logic, Symbolic and mathematical

Page: N.A

View: 9840

Includes lists of members.
Read More

Author: Frank Robert Drake,Dasharath Singh

Publisher: John Wiley & Sons Inc

ISBN: 9780471964940

Category: Mathematics

Page: 234

View: 355

The authors cover first order logic and the main topics of set theory in a clear mathematical style with sensible philosophical discussion. The emphasis is on presenting the use of set theory in various areas of mathematics, with particular attention paid to introducing axiomatic set theory, showing how the axioms are needed in mathematical practice and how they arise. Other areas introduced include the axiom of choice, filters and ideals. Exercises are provided which are suitable for both beginning students and degree-level students.
Read More

Author: N.A

Publisher: N.A

ISBN: N.A

Category: Bibliography

Page: N.A

View: 5318

Read More

BPR cumulative

Author: N.A

Publisher: N.A

ISBN: N.A

Category: American literature

Page: N.A

View: 5982

An annual cumulation of American book production as cataloged by the Library of Congress and recorded both in Weekly Record and in monthly issues of American Book Publishing Record.
Read More

Author: N.A

Publisher: N.A

ISBN: N.A

Category: Academic libraries

Page: N.A

View: 2631

Read More

Towards Practicable Foundations for Constructive Mathematics

Author: Laura Crosilla,Peter Schuster

Publisher: Oxford University Press on Demand

ISBN: 0198566514

Category: Mathematics

Page: 350

View: 1290

Bridging the foundations and practice of constructive mathematics, this text focusses on the contrast between the theoretical developments - which have been most useful for computer science - and more specific efforts on constructive analysis, algebra and topology.
Read More

Author: Raymond M. Smullyan,Melvin Fitting

Publisher: Oxford University Press, USA

ISBN: N.A

Category: Mathematics

Page: 288

View: 1076

Set Theory and the Continuum Problem is a novel introduction to set theory, including axiomatic development, consistency, and independence results. It is self-contained and covers all the set theory that a mathematician should know. Part I introduces set theory, including basic axioms, development of the natural number system, Zorn's Lemma and other maximal principles. Part II proves the consistency of the continuum hypothesis and the axiom of choice, with material on collapsing mappings, model-theoretic results, and constructible sets. Part III presents a version of Cohen's proofs of the independence of the continuum hypothesis and the axiom of choice. It also presents, for the first time in a textbook, the double induction and superinduction principles, and Cowen's theorem. The book will interest students and researchers in logic and set theory.
Read More

exploring an untyped universe

Author: T. E. Forster

Publisher: Oxford University Press, USA

ISBN: N.A

Category: Mathematics

Page: 152

View: 7207

Set theory is concerned with the foundations of mathematics. In the original formulations, there were paradoxes concerning the idea of the "set of all sets." Current standard theory (Zermelo-Fraenkel) avoids these paradoxes by restricting the way sets may be formed by other sets specifically to disallow the possibility of forming the set of all sets. In the 1930s, Quine proposed a different form of set theory in which the set of all sets-- the universal set-- is allowed, but other restrictions are placed on these axioms. Since then, the steady interest expressed in these non-standard set theories has been boosted by their relevance to computer science. This text concentrates heavily on Quine's New Foundations, reflecting the author's belief that it provides the richest and most mysterious of the various systems dealing with set theories with a universal set. The result is a work that provides a useful introduction for those new to this topic, and a valuable reference for those already involved in the area.
Read More

Author: Richard Kaye

Publisher: Oxford University Press, USA

ISBN: N.A

Category: Literary Criticism

Page: 292

View: 2615

Non-standard models of arithmetic are of interest to mathematicians through the presence of infinite integers and the various properties they inherit from the finite integers. Since their introduction in the 1930s, they have come to play an important role in model theory, and in combinatorics through independence results such as the Paris-Harrington theorem. This book is an introduction to these developments, and stresses the interplay between the first-order theory, recursion-theoretic aspects, and the structural properties of these models. Prerequisites for an understanding of the text have been kept to a minimum, these being a basic grounding in elementary model theory and a familiarity with the notions of recursive, primitive recursive, and r.e. sets. Consequently, the book is suitable for postgraduate students coming to the subject for the first time, and a number of exercises of varying degrees of difficulty will help to further the reader's understanding.
Read More