Author: John H. Mathews,Russell W. Howell

Publisher: Jones & Bartlett Publishers

ISBN: 1449604455

Category: Mathematics

Page: 645

View: 3153

Intended for the undergraduate student majoring in mathematics, physics or engineering, the Sixth Edition of Complex Analysis for Mathematics and Engineering continues to provide a comprehensive, student-friendly presentation of this interesting area of mathematics. The authors strike a balance between the pure and applied aspects of the subject, and present concepts in a clear writing style that is appropriate for students at the junior/senior level. Through its thorough, accessible presentation and numerous applications, the sixth edition of this classic text allows students to work through even the most difficult proofs with ease. New exercise sets help students test their understanding of the material at hand and assess their progress through the course. Additional Mathematica and Maple exercises, as well as a student study guide are also available online.
Read More

Author: Alan Jeffrey

Publisher: CRC Press

ISBN: 158488553X

Category: Mathematics

Page: 592

View: 7842

Complex Analysis and Applications, Second Edition explains complex analysis for students of applied mathematics and engineering. Restructured and completely revised, this textbook first develops the theory of complex analysis, and then examines its geometrical interpretation and application to Dirichlet and Neumann boundary value problems. A discussion of complex analysis now forms the first three chapters of the book, with a description of conformal mapping and its application to boundary value problems for the two-dimensional Laplace equation forming the final two chapters. This new structure enables students to study theory and applications separately, as needed. In order to maintain brevity and clarity, the text limits the application of complex analysis to two-dimensional boundary value problems related to temperature distribution, fluid flow, and electrostatics. In each case, in order to show the relevance of complex analysis, each application is preceded by mathematical background that demonstrates how a real valued potential function and its related complex potential can be derived from the mathematics that describes the physical situation.
Read More

Author: Harold Cohen

Publisher: Springer Science & Business Media

ISBN: 0387730583

Category: Mathematics

Page: 477

View: 1084

The Second Edition of this acclaimed text helps you apply theory to real-world applications in mathematics, physics, and engineering. It easily guides you through complex analysis with its excellent coverage of topics such as series, residues, and the evaluation of integrals; multi-valued functions; conformal mapping; dispersion relations; and analytic continuation. Worked examples plus a large number of assigned problems help you understand how to apply complex concepts and build your own skills by putting them into practice. This edition features many new problems, revised sections, and an entirely new chapter on analytic continuation.
Read More

Author: Walter Rudin

Publisher: Walter de Gruyter

ISBN: 9783486591866

Category: Analysis - Lehrbuch

Page: 499

View: 6127

Besonderen Wert legt Rudin darauf, dem Leser die Zusammenhänge unterschiedlicher Bereiche der Analysis zu vermitteln und so die Grundlage für ein umfassenderes Verständnis zu schaffen. Das Werk zeichnet sich durch seine wissenschaftliche Prägnanz und Genauigkeit aus und hat damit die Entwicklung der modernen Analysis in nachhaltiger Art und Weise beeinflusst. Der "Baby-Rudin" gehört weltweit zu den beliebtesten Lehrbüchern der Analysis und ist in 13 Sprachen übersetzt. 1993 wurde es mit dem renommierten Steele Prize for Mathematical Exposition der American Mathematical Society ausgezeichnet. Übersetzt von Uwe Krieg.
Read More

Author: William T. Shaw

Publisher: Cambridge University Press

ISBN: 0521836263

Category: Computers

Page: 571

View: 4559

This book presents a way of learning complex analysis, using Mathematica. Includes CD with electronic version of the book.
Read More

Author: Eberhard Freitag,Rolf Busam

Publisher: Springer-Verlag

ISBN: 3662073498

Category: Mathematics

Page: 533

View: 6902

Die komplexen Zahlen haben ihre historischen Wurzeln im 16. Jahrhundert, sie entstanden bei dem Versuch, algebmische Gleichungen zu lösen. So führte schon G. CARDANO (1545) formale Ausdrücke wie zum Beispiel 5 ± v'-15 ein, um Lösungen quadratischer und kubischer Gleichungen angeben zu können. R. BOMBELLI rechnete um 1560 bereits systematisch mit diesen Ausdrücken 3 und fand 4 als Lösung der Gleichung x = 15x + 4 in der verschlüsselten Form 4 = ~2 + v'-121 + ~2 - v'-121. Auch bei G. W. LEIBNIZ (1675) findet man Gleichungen dieser Art, wie z. B. VI + v'=3 + Vl- v'=3 = v'6. Im Jahre 1777 führte L. EULER die Bezeichnung i = A für die imaginäre Einheit ein. Der Fachausdruck "komplexe Zahl" stammt von C. F. GAUSS (1831). Die strenge Einführung der komplexen Zahlen als Paare reeller Zahlen geht auf W. R. HAMILTON (1837) zurück. Schon in der reellen Analysis ist es gelegentlich vorteilhaft, komplexe Zahlen einzuführen. Man denke beispielsweise an die Integration rationaler Funktio nen, die auf der Partialbruchentwicklung und damit auf dem Fundamentalsatz der Algebra beruht: Über dem Körper der komplexen Zahlen zerfällt jedes Polynom in ein Produkt von Linearfaktoren.
Read More

Elemente der Funktionentheorie

Author: Wolfgang Fischer,Ingo Lieb

Publisher: Springer-Verlag

ISBN: 3834893773

Category: Mathematics

Page: 214

View: 8003

In den Bachelor-Studiengängen der Mathematik steht für die Komplexe Analysis (Funktionentheorie) oft nur eine einsemestrige 2-stündige Vorlesung zur Verfügung. Dieses Buch eignet sich als Grundlage für eine solche Vorlesung im 2. Studienjahr. Mit einer guten thematischen Auswahl, vielen Beispielen und ausführlichen Erläuterungen gibt dieses Buch eine Darstellung der Komplexen Analysis, die genau die Grundlagen und den wesentlichen Kernbestand dieses Gebietes enthält. Das Buch bietet über diese Grundausbildung hinaus weiteres Lehrmaterial als Ergänzung, sodass es auch für eine 3- oder 4 –stündige Vorlesung geeignet ist. Je nach Hörerkreis kann der Stoff unterschiedlich erweitert werden. So wurden für den „Bachelor Lehramt“ die geometrischen Aspekte der Komplexen Analysis besonders herausgearbeitet.
Read More

THEORY AND APPLICATIONS

Author: H. S. KASANA

Publisher: PHI Learning Pvt. Ltd.

ISBN: 9788120326415

Category: Mathematics

Page: 504

View: 7320

The second edition of this comprehensive and accessible text continues to offer students a challenging and enjoyable study of complex variables that is infused with perfect balanced coverage of mathematical theory and applied topics. The author explains fundamental concepts and techniques with precision and introduces the students to complex variable theory through conceptual develop-ment of analysis that enables them to develop a thorough understanding of the topics discussed. Geometric interpretation of the results, wherever necessary, has been inducted for making the analysis more accessible. The level of the text assumes that the reader is acquainted with elementary real analysis. Beginning with the revision of the algebra of complex variables, the book moves on to deal with analytic functions, elementary functions, complex integration, sequences, series and infinite products, series expansions, singularities and residues. The application-oriented chapters on sums and integrals, conformal mappings, Laplace transform, and some special topics, provide a practical-use perspective. Enriched with many numerical examples and exercises designed to test the student's comprehension of the topics covered, this book is written for a one-semester course in complex variables for students in the science and engineering disciplines.
Read More

Author: Elias M. Stein,Rami Shakarchi

Publisher: Princeton University Press

ISBN: 1400831156

Category: Mathematics

Page: 400

View: 1400

With this second volume, we enter the intriguing world of complex analysis. From the first theorems on, the elegance and sweep of the results is evident. The starting point is the simple idea of extending a function initially given for real values of the argument to one that is defined when the argument is complex. From there, one proceeds to the main properties of holomorphic functions, whose proofs are generally short and quite illuminating: the Cauchy theorems, residues, analytic continuation, the argument principle. With this background, the reader is ready to learn a wealth of additional material connecting the subject with other areas of mathematics: the Fourier transform treated by contour integration, the zeta function and the prime number theorem, and an introduction to elliptic functions culminating in their application to combinatorics and number theory. Thoroughly developing a subject with many ramifications, while striking a careful balance between conceptual insights and the technical underpinnings of rigorous analysis, Complex Analysis will be welcomed by students of mathematics, physics, engineering and other sciences. The Princeton Lectures in Analysis represents a sustained effort to introduce the core areas of mathematical analysis while also illustrating the organic unity between them. Numerous examples and applications throughout its four planned volumes, of which Complex Analysis is the second, highlight the far-reaching consequences of certain ideas in analysis to other fields of mathematics and a variety of sciences. Stein and Shakarchi move from an introduction addressing Fourier series and integrals to in-depth considerations of complex analysis; measure and integration theory, and Hilbert spaces; and, finally, further topics such as functional analysis, distributions and elements of probability theory.
Read More

Author: Ravi P. Agarwal,Kanishka Perera,Sandra Pinelas

Publisher: Springer Science & Business Media

ISBN: 9781461401957

Category: Mathematics

Page: 331

View: 8779

This textbook introduces the subject of complex analysis to advanced undergraduate and graduate students in a clear and concise manner. Key features of this textbook: effectively organizes the subject into easily manageable sections in the form of 50 class-tested lectures, uses detailed examples to drive the presentation, includes numerous exercise sets that encourage pursuing extensions of the material, each with an “Answers or Hints” section, covers an array of advanced topics which allow for flexibility in developing the subject beyond the basics, provides a concise history of complex numbers. An Introduction to Complex Analysis will be valuable to students in mathematics, engineering and other applied sciences. Prerequisites include a course in calculus.
Read More

Second Edition

Author: John D. Paliouras,Douglas S. Meadows

Publisher: Courier Corporation

ISBN: 0486782220

Category: Mathematics

Page: 608

View: 5828

Outstanding undergraduate text provides a thorough understanding of fundamentals and creates the basis for higher-level courses. Numerous examples and extensive exercise sections of varying difficulty, plus answers to selected exercises. 1990 edition.
Read More

With Applications to Engineering and Science (Classic Version)

Author: Edward Saff,Arthur D. Snider

Publisher: Math Classics

ISBN: 9780134689487

Category: Mathematics

Page: 576

View: 6937

Originally published in 2003, reissued as part of Pearson's modern classic series.
Read More

Author: John M. Howie

Publisher: Springer Science & Business Media

ISBN: 1447100271

Category: Mathematics

Page: 260

View: 3112

Complex analysis can be a difficult subject and many introductory texts are just too ambitious for today’s students. This book takes a lower starting point than is traditional and concentrates on explaining the key ideas through worked examples and informal explanations, rather than through "dry" theory.
Read More

Author: Saminathan Ponnusamy,Herb Silverman

Publisher: Springer Science & Business Media

ISBN: 9780817645137

Category: Mathematics

Page: 514

View: 2815

Explores the interrelations between real and complex numbers by adopting both generalization and specialization methods to move between them, while simultaneously examining their analytic and geometric characteristics Engaging exposition with discussions, remarks, questions, and exercises to motivate understanding and critical thinking skills Encludes numerous examples and applications relevant to science and engineering students
Read More

Author: John P. D'Angelo

Publisher: CRC Press

ISBN: 1498756166

Category: Mathematics

Page: 264

View: 5677

Linear and Complex Analysis for Applications aims to unify various parts of mathematical analysis in an engaging manner and to provide a diverse and unusual collection of applications, both to other fields of mathematics and to physics and engineering. The book evolved from several of the author’s teaching experiences, his research in complex analysis in several variables, and many conversations with friends and colleagues. It has three primary goals: ? to develop enough linear analysis and complex variable theory to prepare students in engineering or applied mathematics for advanced work, to unify many distinct and seemingly isolated topics, to show mathematics as both interesting and useful, especially via the juxtaposition of examples and theorems. ? The book realizes these goals by beginning with reviews of Linear Algebra, Complex Numbers, and topics from Calculus III. As the topics are being reviewed, new material is inserted to help the student develop skill in both computation and theory. The material on linear algebra includes infinite-dimensional examples arising from elementary calculus and differential equations. Line and surface integrals are computed both in the language of classical vector analysis and by using differential forms. Connections among the topics and applications appear throughout the book. The text weaves abstract mathematics, routine computational problems, and applications into a coherent whole, whose unifying theme is linear systems. It includes many unusual examples and contains more than 450 exercises.
Read More

Author: Wilbur R. LePage

Publisher: Courier Corporation

ISBN: 0486136442

Category: Technology & Engineering

Page: 512

View: 5581

Acclaimed text on engineering math for graduate students covers theory of complex variables, Cauchy-Riemann equations, Fourier and Laplace transform theory, Z-transform, and much more. Many excellent problems.
Read More

Author: Tristan Needham

Publisher: Oxford University Press

ISBN: 9780198534464

Category: Mathematics

Page: 592

View: 1939

Now available in paperback, this successful radical approach to complex analysis replaces the standard calculational arguments with new geometric ones. With several hundred diagrams, and far fewer prerequisites than usual, this is the first visual intuitive introduction to complex analysis. Although designed for use by undergraduates in mathematics and science, the novelty of the approach will also interest professional mathematicians.
Read More

Author: Luis Manuel Braga da Costa Campos

Publisher: CRC Press

ISBN: 1420071203

Category: Mathematics

Page: 1029

View: 1466

Complex Analysis with Applications to Flows and Fields presents the theory of functions of a complex variable, from the complex plane to the calculus of residues to power series to conformal mapping. The book explores numerous physical and engineering applications concerning potential flows, the gravity field, electro- and magnetostatics, steady heat conduction, and other problems. It provides the mathematical results to sufficiently justify the solution of these problems, eliminating the need to consult external references. The book is conveniently divided into four parts. In each part, the mathematical theory appears in odd-numbered chapters while the physical and engineering applications can be found in even-numbered chapters. Each chapter begins with an introduction or summary and concludes with related topics. The last chapter in each section offers a collection of many detailed examples. This self-contained book gives the necessary mathematical background and physical principles to build models for technological and scientific purposes. It shows how to formulate problems, justify the solutions, and interpret the results.
Read More