Computable Functions, Logic, and the Foundations of Mathematics

Author: Richard L. Epstein,Walter Alexandre Carnielli

Publisher: N.A

ISBN: 9780981550725

Category: Mathematics

Page: 370

View: 4827

This classic presentation of the theory of computable functions includes discussions and readings about the crisis in the foundations of mathematics in the early 20th century, while presenting the basic ideas of whole number, function, proof, and real number.
Read More

Computable Functions, Logic, and the Foundations of Mathematics

Author: Richard L. Epstein,Walter Alexandre Carnielli

Publisher: Wadsworth Publishing Company

ISBN: 9780534546441

Category: Mathematics

Page: 337

View: 5537

This highly readable and intuitive introduction to computability theory contains a great many background discussions which introduce the reader to the researched history and philosophical aspects of recursion theory and logic. This book is perfectly suited for class work and individual study, successfully achieving the goal of painlessly introducing technical matter in a readable and stimulating way.
Read More

Computable Functions Logic and the Foundations of Math

Author: Richard L. Epstein,Walter Alexandr Carnielli

Publisher: Chapman and Hall/CRC

ISBN: 9780534103569

Category: Mathematics

Page: 297

View: 4526

An introduction to recursion theory and particularly to the theory of computing, including fourteen readings by Hilbert, Godel, Turing, Post, Church, and others along with a discussion of issues such as self-reference and infinite sets. Annotation copyrighted by Book News, Inc., Portland, OR
Read More

The Theory of Functions and Sets of Natural Numbers

Author: P. Odifreddi

Publisher: Elsevier

ISBN: 9780080886596

Category: Computers

Page: 667

View: 9854

1988 marked the first centenary of Recursion Theory, since Dedekind's 1888 paper on the nature of number. Now available in paperback, this book is both a comprehensive reference for the subject and a textbook starting from first principles. Among the subjects covered are: various equivalent approaches to effective computability and their relations with computers and programming languages; a discussion of Church's thesis; a modern solution to Post's problem; global properties of Turing degrees; and a complete algebraic characterization of many-one degrees. Included are a number of applications to logic (in particular Gödel's theorems) and to computer science, for which Recursion Theory provides the theoretical foundation.
Read More

Author: Srivastava

Publisher: Tata McGraw-Hill Education

ISBN: 1259081907

Category: Business

Page: 210

View: 2293

Classic graduate-level introduction to theory of computability. Discusses general theory of computability, computable functions, operations on computable functions, Turing machines self-applied, unsolvable decision problems, applications of general theory, mathematical logic, Kleene hierarchy, more.
Read More

Author: Borut Robič

Publisher: Springer

ISBN: 3662448084

Category: Computers

Page: 331

View: 9371

This book offers an original and informative view of the development of fundamental concepts of computability theory. The treatment is put into historical context, emphasizing the motivation for ideas as well as their logical and formal development. In Part I the author introduces computability theory, with chapters on the foundational crisis of mathematics in the early twentieth century, and formalism; in Part II he explains classical computability theory, with chapters on the quest for formalization, the Turing Machine, and early successes such as defining incomputable problems, c.e. (computably enumerable) sets, and developing methods for proving incomputability; in Part III he explains relative computability, with chapters on computation with external help, degrees of unsolvability, the Turing hierarchy of unsolvability, the class of degrees of unsolvability, c.e. degrees and the priority method, and the arithmetical hierarchy. This is a gentle introduction from the origins of computability theory up to current research, and it will be of value as a textbook and guide for advanced undergraduate and graduate students and researchers in the domains of computability theory and theoretical computer science.
Read More

Author: E.R. Griffor

Publisher: Elsevier

ISBN: 9780080533049

Category: Mathematics

Page: 724

View: 2723

The chapters of this volume all have their own level of presentation. The topics have been chosen based on the active research interest associated with them. Since the interest in some topics is older than that in others, some presentations contain fundamental definitions and basic results while others relate very little of the elementary theory behind them and aim directly toward an exposition of advanced results. Presentations of the latter sort are in some cases restricted to a short survey of recent results (due to the complexity of the methods and proofs themselves). Hence the variation in level of presentation from chapter to chapter only reflects the conceptual situation itself. One example of this is the collective efforts to develop an acceptable theory of computation on the real numbers. The last two decades has seen at least two new definitions of effective operations on the real numbers.
Read More

Basic Papers on Undecidable Propositions, Unsolvable Problems and Computable Functions

Author: Martin Davis

Publisher: Courier Corporation

ISBN: 9780486432281

Category: Mathematics

Page: 413

View: 1836

"A valuable collection both for original source material as well as historical formulations of current problems." — The Review of Metaphysics "Much more than a mere collection of papers. A valuable addition to the literature." — Mathematics of Computation An anthology of fundamental papers on undecidability and unsolvability by major figures in the field , this classic reference is ideally suited as a text for graduate and undergraduate courses in logic, philosophy, and foundations of mathematics. It is also appropriate for self-study. The text opens with Godel's landmark 1931 paper demonstrating that systems of logic cannot admit proofs of all true assertions of arithmetic. Subsequent papers by Godel, Church, Turing, and Post single out the class of recursive functions as computable by finite algorithms. Additional papers by Church, Turing, and Post cover unsolvable problems from the theory of abstract computing machines, mathematical logic, and algebra, and material by Kleene and Post includes initiation of the classification theory of unsolvable problems. Supplementary items include corrections, emendations, and added commentaries by Godel, Church, and Kleene for this volume's original publication, along with a helpful commentary by the editor.
Read More

Author: Eugenio G. Omodeo,Alberto Policriti

Publisher: Springer

ISBN: 3319418424

Category: Philosophy

Page: 438

View: 3651

This book presents a set of historical recollections on the work of Martin Davis and his role in advancing our understanding of the connections between logic, computing, and unsolvability. The individual contributions touch on most of the core aspects of Davis’ work and set it in a contemporary context. They analyse, discuss and develop many of the ideas and concepts that Davis put forward, including such issues as contemporary satisfiability solvers, essential unification, quantum computing and generalisations of Hilbert’s tenth problem. The book starts out with a scientific autobiography by Davis, and ends with his responses to comments included in the contributions. In addition, it includes two previously unpublished original historical papers in which Davis and Putnam investigate the decidable and the undecidable side of Logic, as well as a full bibliography of Davis’ work. As a whole, this book shows how Davis’ scientific work lies at the intersection of computability, theoretical computer science, foundations of mathematics, and philosophy, and draws its unifying vision from his deep involvement in Logic.
Read More

The Semantic Foundations of Logic

Author: Richard L. Epstein

Publisher: Wadsworth Publishing Company

ISBN: N.A

Category: Philosophy

Page: 412

View: 552

A presentation of the fundamental ideas that generate the formal systems of predicate logic. This text clearly relates predicate logic to reasoning in ordinary language, with hundreds of examples of formalization, with a clear theory of how to formalize ordinary arguments. The writing is exceptionally clear and easy to read.
Read More

Author: B. Jack. Copeland

Publisher: Clarendon Press

ISBN: 9780191520280

Category: Science

Page: 622

View: 7012

Alan Turing, pioneer of computing and WWII codebreaker, is one of the most important and influential thinkers of the twentieth century. In this volume for the first time his key writings are made available to a broad, non-specialist readership. They make fascinating reading both in their own right and for their historic significance: contemporary computational theory, cognitive science, artificial intelligence, and artificial life all spring from this ground-breaking work, which is also rich in philosophical and logical insight. An introduction by leading Turing expert Jack Copeland provides the background and guides the reader through the selection. About Alan Turing Alan Turing FRS OBE, (1912-1954) studied mathematics at King's College, Cambridge. He was elected a Fellow of King's in March 1935, at the age of only 22. In the same year he invented the abstract computing machines - now known simply as Turing machines - on which all subsequent stored-program digital computers are modelled. During 1936-1938 Turing continued his studies, now at Princeton University. He completed a PhD in mathematical logic, analysing the notion of 'intuition' in mathematics and introducing the idea of oracular computation, now fundamental in mathematical recursion theory. An 'oracle' is an abstract device able to solve mathematical problems too difficult for the universal Turing machine. In the summer of 1938 Turing returned to his Fellowship at King's. When WWII started in 1939 he joined the wartime headquarters of the Government Code and Cypher School (GC&CS) at Bletchley Park, Buckinghamshire. Building on earlier work by Polish cryptanalysts, Turing contributed crucially to the design of electro-mechanical machines ('bombes') used to decipher Enigma, the code by means of which the German armed forces sought to protect their radio communications. Turing's work on the version of Enigma used by the German navy was vital to the battle for supremacy in the North Atlantic. He also contributed to the attack on the cyphers known as 'Fish'. Based on binary teleprinter code, Fish was used during the latter part of the war in preference to morse-based Enigma for the encryption of high-level signals, for example messages from Hitler and other members of the German High Command. It is estimated that the work of GC&CS shortened the war in Europe by at least two years. Turing received the Order of the British Empire for the part he played. In 1945, the war over, Turing was recruited to the National Physical Laboratory (NPL) in London, his brief to design and develop an electronic computer - a concrete form of the universal Turing machine. Turing's report setting out his design for the Automatic Computing Engine (ACE) was the first relatively complete specification of an electronic stored-program general-purpose digital computer. Delays beyond Turing's control resulted in NPL's losing the race to build the world's first working electronic stored-program digital computer - an honour that went to the Royal Society Computing Machine Laboratory at Manchester University, in June 1948. Discouraged by the delays at NPL, Turing took up the Deputy Directorship of the Royal Society Computing Machine Laboratory in that year. Turing was a founding father of modern cognitive science and a leading early exponent of the hypothesis that the human brain is in large part a digital computing machine, theorising that the cortex at birth is an 'unorganised machine' which through 'training' becomes organised 'into a universal machine or something like it'. He also pioneered Artificial Intelligence. Turing spent the rest of his short career at Manchester University, being appointed to a specially created Readership in the Theory of Computing in May 1953. He was elected a Fellow of the Royal Society of London in March 1951 (a high honour).
Read More

On the Computable and Reverse Mathematics of Combinatorial Principles

Author: Denis R Hirschfeldt

Publisher: World Scientific

ISBN: 9814612634

Category: Mathematics

Page: 232

View: 4495

This book is a brief and focused introduction to the reverse mathematics and computability theory of combinatorial principles, an area of research which has seen a particular surge of activity in the last few years. It provides an overview of some fundamental ideas and techniques, and enough context to make it possible for students with at least a basic knowledge of computability theory and proof theory to appreciate the exciting advances currently happening in the area, and perhaps make contributions of their own. It adopts a case-study approach, using the study of versions of Ramsey's Theorem (for colorings of tuples of natural numbers) and related principles as illustrations of various aspects of computability theoretic and reverse mathematical analysis. This book contains many exercises and open questions. Contents:Setting Off: An IntroductionGathering Our Tools: Basic Concepts and NotationFinding Our Path: König's Lemma and ComputabilityGauging Our Strength: Reverse MathematicsIn Defense of DisarrayAchieving Consensus: Ramsey's TheoremPreserving Our Power: ConservativityDrawing a Map: Five DiagramsExploring Our Surroundings: The World Below RT22Charging Ahead: Further TopicsLagniappe: A Proof of Liu's Theorem Readership: Graduates and researchers in mathematical logic. Key Features:This book assumes minimal background in mathematical logic and takes the reader all the way to current research in a highly active areaIt is the first detailed introduction to this particular approach to this area of researchThe combination of fully worked out arguments and exercises make this book well suited to self-study by graduate students and other researchers unfamiliar with the areaKeywords:Reverse Mathematics;Computability Theory;Computable Mathematics;Computable Combinatorics
Read More

Author: E. Börger

Publisher: Elsevier

ISBN: 9780080887043

Category: Mathematics

Page: 591

View: 4159

The theme of this book is formed by a pair of concepts: the concept of formal language as carrier of the precise expression of meaning, facts and problems, and the concept of algorithm or calculus, i.e. a formally operating procedure for the solution of precisely described questions and problems. The book is a unified introduction to the modern theory of these concepts, to the way in which they developed first in mathematical logic and computability theory and later in automata theory, and to the theory of formal languages and complexity theory. Apart from considering the fundamental themes and classical aspects of these areas, the subject matter has been selected to give priority throughout to the new aspects of traditional questions, results and methods which have developed from the needs or knowledge of computer science and particularly of complexity theory. It is both a textbook for introductory courses in the above-mentioned disciplines as well as a monograph in which further results of new research are systematically presented and where an attempt is made to make explicit the connections and analogies between a variety of concepts and constructions.
Read More

Author: Nicholas Pippenger

Publisher: Cambridge University Press

ISBN: 9780521553803

Category: Computers

Page: 251

View: 4331

A mathematically sophisticated introduction to Turing's theory, Boolean functions, automata, and formal languages.
Read More

The Mathematics of Truth and Proof

Author: John C. Stillwell

Publisher: CRC Press

ISBN: 1439865507

Category: Mathematics

Page: 250

View: 9304

Winner of a CHOICE Outstanding Academic Title Award for 2011! This book offers an introduction to modern ideas about infinity and their implications for mathematics. It unifies ideas from set theory and mathematical logic, and traces their effects on mainstream mathematical topics of today, such as number theory and combinatorics. The treatment is historical and partly informal, but with due attention to the subtleties of the subject. Ideas are shown to evolve from natural mathematical questions about the nature of infinity and the nature of proof, set against a background of broader questions and developments in mathematics. A particular aim of the book is to acknowledge some important but neglected figures in the history of infinity, such as Post and Gentzen, alongside the recognized giants Cantor and Gödel.
Read More

Author: O. Bradley Bassler

Publisher: Springer

ISBN: 1137578890

Category: Philosophy

Page: 215

View: 4289

This book charts the shape of future philosophical investigation by posing the question: “What is the Matrix?” Guided by the example of the Matrix film trilogy, the author examines issues ranging from simulation, proof and action to value, culture and mythology, offering a progressively deeper diagnosis of modern philosophical conditions. In contrast to the contemporary focus upon cognitive science and a commitment to the distinction between appearance and reality, this book helps readers to explore the argument that such abstractions are inevitably displaced by a more concrete distinction between dreaming and waking, with the Matrix as the real and only world we inhabit. Researchers and scholars will find this work an engaging and enlightening examination of reality, via the medium of popular culture and film.
Read More

Studies in Agent-Based Computational Modeling

Author: Joshua M. Epstein

Publisher: Princeton University Press

ISBN: 1400842875

Category: Business & Economics

Page: 384

View: 9541

Agent-based computational modeling is changing the face of social science. In Generative Social Science, Joshua Epstein argues that this powerful, novel technique permits the social sciences to meet a fundamentally new standard of explanation, in which one "grows" the phenomenon of interest in an artificial society of interacting agents: heterogeneous, boundedly rational actors, represented as mathematical or software objects. After elaborating this notion of generative explanation in a pair of overarching foundational chapters, Epstein illustrates it with examples chosen from such far-flung fields as archaeology, civil conflict, the evolution of norms, epidemiology, retirement economics, spatial games, and organizational adaptation. In elegant chapter preludes, he explains how these widely diverse modeling studies support his sweeping case for generative explanation. This book represents a powerful consolidation of Epstein's interdisciplinary research activities in the decade since the publication of his and Robert Axtell's landmark volume, Growing Artificial Societies. Beautifully illustrated, Generative Social Science includes a CD that contains animated movies of core model runs, and programs allowing users to easily change assumptions and explore models, making it an invaluable text for courses in modeling at all levels.
Read More

Author: André Nies

Publisher: OUP Oxford

ISBN: 0191627887

Category: Philosophy

Page: 456

View: 1011

The interplay between computability and randomness has been an active area of research in recent years, reflected by ample funding in the USA, numerous workshops, and publications on the subject. The complexity and the randomness aspect of a set of natural numbers are closely related. Traditionally, computability theory is concerned with the complexity aspect. However, computability theoretic tools can also be used to introduce mathematical counterparts for the intuitive notion of randomness of a set. Recent research shows that, conversely, concepts and methods originating from randomness enrich computability theory. The book covers topics such as lowness and highness properties, Kolmogorov complexity, betting strategies and higher computability. Both the basics and recent research results are desribed, providing a very readable introduction to the exciting interface of computability and randomness for graduates and researchers in computability theory, theoretical computer science, and measure theory.
Read More

The Road from Leibniz to Turing, Third Edition

Author: Martin Davis

Publisher: CRC Press

ISBN: 1351384813

Category: Mathematics

Page: 222

View: 7005

The breathtakingly rapid pace of change in computing makes it easy to overlook the pioneers who began it all. Written by Martin Davis, respected logician and researcher in the theory of computation, The Universal Computer: The Road from Leibniz to Turing explores the fascinating lives, ideas, and discoveries of seven remarkable mathematicians. It tells the stories of the unsung heroes of the computer age – the logicians.
Read More

Author: Raymond M. Smullyan

Publisher: Knopf

ISBN: 0307962466

Category: Mathematics

Page: 257

View: 964

Forever Undecided is the most challenging yet of Raymond Smullyan’s puzzle collections. It is, at the same time, an introduction—ingenious, instructive, entertaining—to Gödel’s famous theorems. With all the wit and charm that have delighted readers of his previous books, Smullyan transports us once again to that magical island where knights always tell the truth and knaves always lie. Here we meet a new and amazing array of characters, visitors to the island, seeking to determine the natives’ identities. Among them: the census-taker McGregor; a philosophical-logician in search of his flighty bird-wife, Oona; and a regiment of Reasoners (timid ones, normal ones, conceited, modest, and peculiar ones) armed with the rules of propositional logic (if X is true, then so is Y). By following the Reasoners through brain-tingling exercises and adventures—including journeys into the “other possible worlds” of Kripke semantics—even the most illogical of us come to understand Gödel’s two great theorems on incompleteness and undecidability, some of their philosophical and mathematical implications, and why we, like Gödel himself, must remain Forever Undecided!
Read More