Author: James D. Meiss

Publisher: SIAM

ISBN: 0898716357

Category: Mathematics

Page: 412

View: 2011

Differential equations are the basis for models of any physical systems that exhibit smooth change. This book combines much of the material found in a traditional course on ordinary differential equations with an introduction to the more modern theory of dynamical systems. Applications of this theory to physics, biology, chemistry, and engineering are shown through examples in such areas as population modeling, fluid dynamics, electronics, and mechanics.Differential Dynamical Systems begins with coverage of linear systems, including matrix algebra; the focus then shifts to foundational material on nonlinear differential equations, making heavy use of the contraction-mapping theorem. Subsequent chapters deal specifically with dynamical systems conceptsflow, stability, invariant manifolds, the phase plane, bifurcation, chaos, and Hamiltonian dynamics. Throughout the book, the author includes exercises to help students develop an analytical and geometrical understanding of dynamics. Many of the exercises and examples are based on applications and some involve computation; an appendix offers simple codes written in Maple, Mathematica, and MATLAB software to give students practice with computation applied to dynamical systems problems. Audience This textbook is intended for senior undergraduates and first-year graduate students in pure and applied mathematics, engineering, and the physical sciences. Readers should be comfortable with elementary differential equations and linear algebra and should have had exposure to advanced calculus. Contents List of Figures; Preface; Acknowledgments; Chapter 1: Introduction; Chapter 2: Linear Systems; Chapter 3: Existence and Uniqueness; Chapter 4: Dynamical Systems; Chapter 5: Invariant Manifolds; Chapter 6: The Phase Plane; Chapter 7: Chaotic Dynamics; Chapter 8: Bifurcation Theory; Chapter 9: Hamiltonian Dynamics; Appendix: Mathematical Software; Bibliography; Index
Read More

Author: A. J. Roberts

Publisher: SIAM

ISBN: 0898716675

Category: Mathematics

Page: 128

View: 9690

Financial mathematics and its calculus introduced in an accessible manner for undergraduate students.
Read More

An Introduction Via Difference and Differential Equations

Author: Jacek Banasiak

Publisher: Cambridge University Press

ISBN: 1107654688

Category: Mathematics

Page: 118

View: 4291

Uses a wide variety of applications to demonstrate the universality of mathematical techniques in describing and analysing natural phenomena.
Read More

An Introduction to the Theory of Competitive and Cooperative Systems

Author: Hal L. Smith

Publisher: American Mathematical Soc.

ISBN: 0821844873

Category: Mathematics

Page: 174

View: 1121

This book presents comprehensive treatment of a rapidly developing area with many potential applications: the theory of monotone dynamical systems and the theory of competitive and cooperative differential equations. The primary aim is to provide potential users of the theory with techniques, results, and ideas useful in applications, while at the same time providing rigorous proofs. Among the topics discussed in the book are continuous-time monotone dynamical systems, and quasimonotone and nonquasimonotone delay differential equations. The book closes with a discussion of applications to quasimonotone systems of reaction-diffusion type. Throughout the book, applications of the theory to many mathematical models arising in biology are discussed. Requiring a background in dynamical systems at the level of a first graduate course, this book is useful to graduate students and researchers working in the theory of dynamical systems and its applications.
Read More

Author: Sergey Lemeshevsky,Piotr Matus,Dmitriy Poliakov

Publisher: Walter de Gruyter GmbH & Co KG

ISBN: 3110489724

Category: Mathematics

Page: 246

View: 1447

Exact Finite-Difference Schemes is a first overview of the topic also describing the state-of-the-art in this field of numerical analysis. Construction of exact difference schemes for various parabolic and elliptic partial differential equations are discussed, including vibrations and transport problems. After this, applications are discussed, such as the discretisation of ODEs and PDEs and numerical methods for stochastic differential equations. Contents: Basic notation Preliminary results Hyperbolic equations Parabolic equations Use of exact difference schemes to construct NSFD discretizations of differential equations Exact and truncated difference schemes for boundary-value problem Exact difference schemes for stochastic differential equations Numerical blow-up time Bibliography
Read More

Author: G. Bard Ermentrout,David H. Terman

Publisher: Springer Science & Business Media

ISBN: 0387877088

Category: Mathematics

Page: 422

View: 5019

This book applies methods from nonlinear dynamics to problems in neuroscience. It uses modern mathematical approaches to understand patterns of neuronal activity seen in experiments and models of neuronal behavior. The intended audience is researchers interested in applying mathematics to important problems in neuroscience, and neuroscientists who would like to understand how to create models, as well as the mathematical and computational methods for analyzing them. The authors take a very broad approach and use many different methods to solve and understand complex models of neurons and circuits. They explain and combine numerical, analytical, dynamical systems and perturbation methods to produce a modern approach to the types of model equations that arise in neuroscience. There are extensive chapters on the role of noise, multiple time scales and spatial interactions in generating complex activity patterns found in experiments. The early chapters require little more than basic calculus and some elementary differential equations and can form the core of a computational neuroscience course. Later chapters can be used as a basis for a graduate class and as a source for current research in mathematical neuroscience. The book contains a large number of illustrations, chapter summaries and hundreds of exercises which are motivated by issues that arise in biology, and involve both computation and analysis. Bard Ermentrout is Professor of Computational Biology and Professor of Mathematics at the University of Pittsburgh. David Terman is Professor of Mathematics at the Ohio State University.
Read More

An Integrated Approach Across Scales

Author: Daniela Calvetti,Erkki Somersalo

Publisher: SIAM

ISBN: 1611972477

Category: Mathematics

Page: 234

View: 5320

Interesting real-world mathematical modelling problems are complex and can usually be studied at different scales. The scale at which the investigation is carried out is one of the factors that determines the type of mathematics most appropriate to describe the problem. The book concentrates on two modelling paradigms: the macroscopic, in which phenomena are described in terms of time evolution via ordinary differential equations; and the microscopic, which requires knowledge of random events and probability. The exposition is based on this unorthodox combination of deterministic and probabilistic methodologies, and emphasizes the development of computational skills to construct predictive models. To elucidate the concepts, a wealth of examples, self-study problems, and portions of MATLAB code used by the authors are included. This book, which has been extensively tested by the authors for classroom use, is intended for students in mathematics and the physical sciences at the advanced undergraduate level and above.
Read More

Theory and Applications

Author: Laécio Carvalho de Barros,Rodney Carlos Bassanezi,Weldon Alexander Lodwick

Publisher: Springer

ISBN: 3662533243

Category: Computers

Page: 299

View: 5191

This book provides an essential introduction to the field of dynamical models. Starting from classical theories such as set theory and probability, it allows readers to draw near to the fuzzy case. On one hand, the book equips readers with a fundamental understanding of the theoretical underpinnings of fuzzy sets and fuzzy dynamical systems. On the other, it demonstrates how these theories are used to solve modeling problems in biomathematics, and presents existing derivatives and integrals applied to the context of fuzzy functions. Each of the major topics is accompanied by examples, worked-out exercises, and exercises to be completed. Moreover, many applications to real problems are presented. The book has been developed on the basis of the authors’ lectures to university students and is accordingly primarily intended as a textbook for both upper-level undergraduates and graduates in applied mathematics, statistics, and engineering. It also offers a valuable resource for practitioners such as mathematical consultants and modelers, and for researchers alike, as it may provide both groups with new ideas and inspirations for projects in the fields of fuzzy logic and biomathematics.
Read More

A Primer

Author: Rudy Slingerland,Lee Kump

Publisher: Princeton University Press

ISBN: 9781400839117

Category: Science

Page: 248

View: 8332

Mathematical Modeling of Earth's Dynamical Systems gives earth scientists the essential skills for translating chemical and physical systems into mathematical and computational models that provide enhanced insight into Earth's processes. Using a step-by-step method, the book identifies the important geological variables of physical-chemical geoscience problems and describes the mechanisms that control these variables. This book is directed toward upper-level undergraduate students, graduate students, researchers, and professionals who want to learn how to abstract complex systems into sets of dynamic equations. It shows students how to recognize domains of interest and key factors, and how to explain assumptions in formal terms. The book reveals what data best tests ideas of how nature works, and cautions against inadequate transport laws, unconstrained coefficients, and unfalsifiable models. Various examples of processes and systems, and ample illustrations, are provided. Students using this text should be familiar with the principles of physics, chemistry, and geology, and have taken a year of differential and integral calculus. Mathematical Modeling of Earth's Dynamical Systems helps earth scientists develop a philosophical framework and strong foundations for conceptualizing complex geologic systems. Step-by-step lessons for representing complex Earth systems as dynamical models Explains geologic processes in terms of fundamental laws of physics and chemistry Numerical solutions to differential equations through the finite difference technique A philosophical approach to quantitative problem-solving Various examples of processes and systems, including the evolution of sandy coastlines, the global carbon cycle, and much more Professors: A supplementary Instructor's Manual is available for this book. It is restricted to teachers using the text in courses. For information on how to obtain a copy, refer to: http://press.princeton.edu/class_use/solutions.html
Read More

Author: A. J. Roberts

Publisher: SIAM

ISBN: 1611973554

Category: Mathematics

Page: 748

View: 5790

Arising out of the growing interest in and applications of modern dynamical systems theory, this book explores how to derive relatively simple dynamical equations that model complex physical interactions.÷ The author?s objectives are to use sound theory to explore algebraic techniques, develop interesting applications, and discover general modeling principles.÷
Read More

Author: Johnny T. Ottesen,Mette S. Olufsen,Jesper K. Larsen

Publisher: SIAM

ISBN: 9780898718287

Category: Body fluids

Page: 298

View: 8520

This book introduces mathematicians to real applications from physiology. Using mathematics to analyze physiological systems, the authors focus on models reflecting current research in cardiovascular and pulmonary physiology. In particular, they present models describing blood flow in the heart and the cardiovascular system, as well as the transport of oxygen and carbon dioxide through the respiratory system and a model for baroreceptor regulation.
Read More

Author: Frederic Y M Wan

Publisher: World Scientific Publishing Company

ISBN: 9813143355

Category: Mathematics

Page: 400

View: 4389

Broadly speaking, there are two general approaches to teaching mathematical modeling: 1) the case study approach, and 2) the method based approach (that teaches mathematical techniques with applications to relevant mathematical models). This text emphasizes instead the scientific issues for modeling different phenomena. For the natural or harvested growth of a fish population, we may be interested in the evolution of the population, whether it reaches a steady state (equilibrium or cycle), stable or unstable with respect to a small perturbation from equilibrium, or whether a small change in the environment would cause a catastrophic change, etc. Each scientific issue requires an appropriate model and a different set of mathematical tools to extract information from the model. Models examined are chosen to help explain or justify empirical observations such as cocktail drug treatments are more effective and regenerations after injuries or illness are fast-tracked (compared to original developments). Volume I of this three-volume set limits its scope to phenomena and scientific issues that are modeled by ordinary differential equations (ODE). Scientific issues such as signal and wave propagation, diffusion, and shock formation involving spatial dynamics to be modeled by partial differential equations (PDE) will be treated in Vol. II. Scientific issues involving randomness and uncertainty are examined in Vol. III. Request Inspection Copy Contents: Mathematical Models and the Modeling CycleGrowth of a Population:Evolution and EquilibriumStability and BifurcationInteracting Populations:Linear InteractionsNonlinear Autonomous InteractionsHIV Dynamics and Drug TreatmentsIndex Theory, Bistability and FeedbackOptimization:The Economics of GrowthOptimization over a Planning PeriodModifications of the Basic ProblemBoundary Value Problems are More ComplexConstraints and Control:"Do Your Best" and the Maximum PrincipleChlamydia TrachomatisGenetic Instability and CarcinogenesisMathematical Modeling RevisitedAppendices:First Order ODEBasic Numerical MethodsAssignments Readership: Undergraduates in mathematical biology, mathematical modeling of dynamical systems, optimization and control, viral dynamics (infectious diseases), oncology.
Read More

Author: Xiao-Qiang Zhao

Publisher: Springer

ISBN: 3319564331

Category: Mathematics

Page: 406

View: 1788

This research monograph provides an introduction to the theory of nonautonomous semiflows with applications to population dynamics. It develops dynamical system approaches to various evolutionary equations such as difference, ordinary, functional, and partial differential equations, and pays more attention to periodic and almost periodic phenomena. The presentation includes persistence theory, monotone dynamics, periodic and almost periodic semiflows, basic reproduction ratios, traveling waves, and global analysis of prototypical population models in ecology and epidemiology. Research mathematicians working with nonlinear dynamics, particularly those interested in applications to biology, will find this book useful. It may also be used as a textbook or as supplementary reading for a graduate special topics course on the theory and applications of dynamical systems. Dr. Xiao-Qiang Zhao is a University Research Professor at Memorial University of Newfoundland, Canada. His main research interests involve applied dynamical systems, nonlinear differential equations, and mathematical biology. He is the author of more than 100 papers, and his research has played an important role in the development of the theory and applications of monotone dynamical systems, periodic and almost periodic semiflows, uniform persistence, and basic reproduction ratios.
Read More

Author: Olejnik Pawel,Feckan Michal,Awrejcewicz Jan

Publisher: #N/A

ISBN: 9813225300

Category: Mathematics

Page: 276

View: 1222

This book is aimed primarily towards physicists and mechanical engineers specializing in modeling, analysis, and control of discontinuous systems with friction and impacts. It fills a gap in the existing literature by offering an original contribution to the field of discontinuous mechanical systems based on mathematical and numerical modeling as well as the control of such systems. Each chapter provides the reader with both the theoretical background and results of verified and useful computations, including solutions of the problems of modeling and application of friction laws in numerical computations, results from finding and analyzing impact solutions, the analysis and control of dynamical systems with discontinuities, etc. The contents offer a smooth correspondence between science and engineering and will allow the reader to discover new ideas. Also emphasized is the unity of diverse branches of physics and mathematics towards understanding complex piecewise-smooth dynamical systems. Mathematical models presented will be important in numerical experiments, experimental measurements, and optimization problems found in applied mechanics.
Read More

Author: Ludwig Arnold

Publisher: Springer Science & Business Media

ISBN: 3662128780

Category: Mathematics

Page: 586

View: 9666

The first systematic presentation of the theory of dynamical systems under the influence of randomness, this book includes products of random mappings as well as random and stochastic differential equations. The basic multiplicative ergodic theorem is presented, providing a random substitute for linear algebra. On its basis, many applications are detailed. Numerous instructive examples are treated analytically or numerically.
Read More

Author: Andrew M. Fraser

Publisher: SIAM

ISBN: 0898716659

Category: Mathematics

Page: 132

View: 8039

Presents algorithms for using HMMs and explains the derivation of those algorithms for the dynamical systems community.
Read More

Polymerization, Crystallization, Manufacturing

Author: Vincenzo Capasso

Publisher: Springer Science & Business Media

ISBN: 3642557716

Category: Mathematics

Page: 320

View: 9477

Polymers are substances made of macromolecules formed by thousands of atoms organized in one (homopolymers) or more (copolymers) groups that repeat themselves to form linear or branched chains, or lattice structures. The concept of polymer traces back to the years 1920's and is one of the most significant ideas of last century. It has given great impulse to indus try but also to fundamental research, including life sciences. Macromolecules are made of sm all molecules known as monomers. The process that brings monomers into polymers is known as polymerization. A fundamental contri bution to the industrial production of polymers, particularly polypropylene and polyethylene, is due to the Nobel prize winners Giulio Natta and Karl Ziegler. The ideas of Ziegler and Natta date back to 1954, and the process has been improved continuously over the years, particularly concerning the design and shaping of the catalysts. Chapter 1 (due to A. Fasano ) is devoted to a review of some results concerning the modelling of the Ziegler- Natta polymerization. The specific ex am pie is the production of polypropilene. The process is extremely complex and all studies with relevant mathematical contents are fairly recent, and several problems are still open.
Read More