## Differential Equations with Mathematica

Author: Martha L. Abell,James P. Braselton

ISBN: 0128047771

Category: Mathematics

Page: 880

View: 9717

Differential Equations with Mathematica, Fourth Edition is a supplementing reference which uses the fundamental concepts of the popular platform to solve (analytically, numerically, and/or graphically) differential equations of interest to students, instructors, and scientists. Mathematica’s diversity makes it particularly well suited to performing calculations encountered when solving many ordinary and partial differential equations. In some cases, Mathematica’s built-in functions can immediately solve a differential equation by providing an explicit, implicit, or numerical solution. In other cases, mathematica can be used to perform the calculations encountered when solving a differential equation. Because one goal of elementary differential equations courses is to introduce students to basic methods and algorithms so that they gain proficiency in them, nearly every topic covered this book introduces basic commands, also including typical examples of their application. A study of differential equations relies on concepts from calculus and linear algebra, so this text also includes discussions of relevant commands useful in those areas. In many cases, seeing a solution graphically is most meaningful, so the book relies heavily on Mathematica’s outstanding graphics capabilities. Demonstrates how to take advantage of the advanced features of Mathematica 10 Introduces the fundamental theory of ordinary and partial differential equations using Mathematica to solve typical problems of interest to students, instructors, scientists, and practitioners in many fields Showcases practical applications and case studies drawn from biology, physics, and engineering

## Partial Differential Equations with Mathematica

Author: Dimitri Dimitrievich Vvedensky

Publisher: Addison Wesley Publishing Company

ISBN: N.A

Category: Mathematics

Page: 465

View: 9303

An introduction to linear and nonlinear partial differential equations with extensive use of the popular computational mathematics computer program, Mathematica, to illustrate techniques and solutions and to provide examples that in many cases would not be practical otherwise. No prior knowledge of

## Introduction to Ordinary Differential Equations with Mathematica

An Integrated Multimedia Approach

Author: Alfred Gray,Michael Mezzino,Mark A. Pinsky

Publisher: Springer

ISBN: 9781461274698

Category: Mathematics

Page: 890

View: 1020

These materials - developed and thoroughly class tested over many years by the authors -are for use in courses at the sophomore/junior level. A prerequisite is the calculus of one variable, although calculus of several variables, and linear algebra are recommended. The text covers the standard topics in first and second order equations, power series solutions, first order systems, Laplace transforms, numerical methods and stability of non-linear systems. Liberal use is made of programs in Mathematica, both for symbolic computations and graphical displays. The programs are described in separate sections, as well as in the accompanying Mathematica notebooks. However, the book has been designed so that it can be read with or without Mathematica and no previous knowledge of Mathematica is required. The CD-ROM contains the Mathematica solution of worked examples, a selection of various Mathematica notebooks, Mathematica movies and sample labs for students. Mathematica programs and additional problem/example files will be available online through the TELOS Web site and the authors dedicated web site.

## Calculus and Differential Equations with Mathematica

Author: Pramote Dechaumphai

Publisher: N.A

ISBN: 9781783322640

Category: Calculus

Page: 428

View: 580

## Symmetry Analysis of Differential Equations with Mathematica®

Author: Gerd Baumann

Publisher: Springer Science & Business Media

ISBN: 1461221102

Category: Mathematics

Page: 521

View: 4898

The first book to explicitly use Mathematica so as to allow researchers and students to more easily compute and solve almost any kind of differential equation using Lie's theory. Previously time-consuming and cumbersome calculations are now much more easily and quickly performed using the Mathematica computer algebra software. The material in this book, and on the accompanying CD-ROM, will be of interest to a broad group of scientists, mathematicians and engineers involved in dealing with symmetry analysis of differential equations. Each section of the book starts with a theoretical discussion of the material, then shows the application in connection with Mathematica. The cross-platform CD-ROM contains Mathematica (version 3.0) notebooks which allow users to directly interact with the code presented within the book. In addition, the author's proprietary "MathLie" software is included, so users can readily learn to use this powerful tool in regard to performing algebraic computations.

## Solving Nonlinear Partial Differential Equations with Maple and Mathematica

Author: Inna Shingareva,Carlos Lizárraga-Celaya

Publisher: Springer Science & Business Media

ISBN: 370910517X

Category: Mathematics

Page: 357

View: 8144

The emphasis of the book is given in how to construct different types of solutions (exact, approximate analytical, numerical, graphical) of numerous nonlinear PDEs correctly, easily, and quickly. The reader can learn a wide variety of techniques and solve numerous nonlinear PDEs included and many other differential equations, simplifying and transforming the equations and solutions, arbitrary functions and parameters, presented in the book). Numerous comparisons and relationships between various types of solutions, different methods and approaches are provided, the results obtained in Maple and Mathematica, facilitates a deeper understanding of the subject. Among a big number of CAS, we choose the two systems, Maple and Mathematica, that are used worldwide by students, research mathematicians, scientists, and engineers. As in the our previous books, we propose the idea to use in parallel both systems, Maple and Mathematica, since in many research problems frequently it is required to compare independent results obtained by using different computer algebra systems, Maple and/or Mathematica, at all stages of the solution process. One of the main points (related to CAS) is based on the implementation of a whole solution method (e.g. starting from an analytical derivation of exact governing equations, constructing discretizations and analytical formulas of a numerical method, performing numerical procedure, obtaining various visualizations, and comparing the numerical solution obtained with other types of solutions considered in the book, e.g. with asymptotic solution).

## Differential Equations

An Introduction with Mathematica®

Author: Clay C. Ross

Publisher: Springer Science & Business Media

ISBN: 1475739494

Category: Mathematics

Page: 434

View: 3353

The first edition (94301-3) was published in 1995 in TIMS and had 2264 regular US sales, 928 IC, and 679 bulk. This new edition updates the text to Mathematica 5.0 and offers a more extensive treatment of linear algebra. It has been thoroughly revised and corrected throughout.

## VisualDSolve

Visualizing Differential Equations with Mathematica®

Author: Dan Schwalbe,Stan Wagon

Publisher: Springer

ISBN: 9781461274735

Category: Computers

Page: 271

View: 492

This title presents new ideas on the visualization of differential equations with user-configurable tools. The authors use the widely-used computer algebra system, Mathematica, to provide an integrated environment for programming, visualizing graphics, and running commentary for learning and working with differential equations.

## Introductory Differential Equations

Author: Martha L. Abell,James P. Braselton

Publisher: Elsevier

ISBN: 0124172822

Category: Mathematics

Page: 530

View: 9196

## Mathematica by Example

Author: Martha L. Abell,James P. Braselton

ISBN: 0128124822

Category: Mathematics

Page: 574

View: 1637

Mathematica by Example, Fifth Edition is an essential desk reference for the beginning Mathematica user, providing step-by-step instructions on achieving results from this powerful software tool. The book fully accounts for the dramatic changes to functionality and visualization capabilities in the most recent version of Mathematica (10.4). It accommodates the full array of new extensions in the types of data and problems that Mathematica can immediately handle, including cloud services and systems, geographic and geometric computation, dynamic visualization, interactive applications and other improvements. It is an ideal text for scientific students, researchers and aspiring programmers seeking further understanding of Mathematica. Written by seasoned practitioners with a view to practical implementation and problem-solving, the book's pedagogy is delivered clearly and without jargon using representative biological, physical and engineering problems. Code is provided on an ancillary website to support the use of Mathematica across diverse applications. Provides a clear organization, integrated topic coverage, and accessible exposition for novices Includes step-by-step instructions for the most popular implementations Contains new applications, exercises and examples from a variety of fields, including biology, physics and engineering Supported by a website providing Mathematica code derived from examples in the book

## Differential Equations with Mathematica, Revised for Mathematica 3.0

Author: Kevin R. Coombes

Publisher: John Wiley & Sons Incorporated

ISBN: 9780471176961

Category: Mathematics

Page: 240

View: 9539

This book changes the emphasis in the traditional ordinary differential equations (ODE) course by using a mathematical software system to introduce numerical methods, geometric interpretation, symbolic computation, and qualitative analysis into the course in a basic way. Includes concise instructions for using Mathematica on three popular computer platforms: Windows, Macintosh, and the X Window System. It focuses on the specific features of Mathematica that are useful for analyzing differential equations, and it also describes the features of the Mathematica "Notebook" interface that are necessary for creating a finished document.

## Numerical Solutions for Partial Differential Equations

Problem Solving Using Mathematica

Author: Victor Grigor'e Ganzha,Evgenii Vasilev Vorozhtsov

Publisher: CRC Press

ISBN: 9780849373794

Category: Mathematics

Page: 347

View: 2115

Partial differential equations (PDEs) play an important role in the natural sciences and technology, because they describe the way systems (natural and other) behave. The inherent suitability of PDEs to characterizing the nature, motion, and evolution of systems, has led to their wide-ranging use in numerical models that are developed in order to analyze systems that are not otherwise easily studied. Numerical Solutions for Partial Differential Equations contains all the details necessary for the reader to understand the principles and applications of advanced numerical methods for solving PDEs. In addition, it shows how the modern computer system algebra Mathematica® can be used for the analytic investigation of such numerical properties as stability, approximation, and dispersion.

## Introduction to Partial Differential Equations for Scientists and Engineers Using Mathematica

Author: Kuzman Adzievski,Abul Hasan Siddiqi

Publisher: CRC Press

ISBN: 1466510579

Category: Mathematics

Page: 648

View: 1307

With a special emphasis on engineering and science applications, this textbook provides a mathematical introduction to PDEs at the undergraduate level. It takes a new approach to PDEs by presenting computation as an integral part of the study of differential equations. The authors use Mathematica® along with graphics to improve understanding and interpretation of concepts. They also present exercises in each chapter and solutions to selected examples. Topics discussed include Laplace and Fourier transforms as well as Sturm-Liouville boundary value problems.

## Partial Differential Equations and Mathematica

Author: Prem K. Kythe,Michael R. Schäferkotter,Pratap Puri

Publisher: CRC Press

ISBN: 1482296322

Category: Mathematics

Page: 440

View: 4206

Early training in the elementary techniques of partial differential equations is invaluable to students in engineering and the sciences as well as mathematics. However, to be effective, an undergraduate introduction must be carefully designed to be challenging, yet still reasonable in its demands. Judging from the first edition's popularity, instructors and students agree that despite the subject's complexity, it can be made fairly easy to understand. Revised and updated to reflect the latest version of Mathematica, Partial Differential Equations and Boundary Value Problems with Mathematica, Second Edition meets the needs of mathematics, science, and engineering students even better. While retaining systematic coverage of theory and applications, the authors have made extensive changes that improve the text's accessibility, thoroughness, and practicality. New in this edition: Upgraded and expanded Mathematica sections that include more exercises An entire chapter on boundary value problems More on inverse operators, Legendre functions, and Bessel functions Simplified treatment of Green's functions that make it more accessible to undergraduates A section on the numerical computation of Green's functions Mathemcatica codes for solving most of the problems discussed Boundary value problems from continuum mechanics, particularly on boundary layers and fluctuating flows Wave propagation and dispersion With its emphasis firmly on solution methods, this book is ideal for any mathematics curricula. It succeeds not only in preparing readers to meet the challenge of PDEs, but also in imparting the inherent beauty and applicability of the subject.

## Applied Differential Equations

The Primary Course

Author: Vladimir A. Dobrushkin

Publisher: CRC Press

ISBN: 1498728359

Category: Mathematics

Page: 731

View: 2653

A Contemporary Approach to Teaching Differential Equations Applied Differential Equations: An Introduction presents a contemporary treatment of ordinary differential equations (ODEs) and an introduction to partial differential equations (PDEs), including their applications in engineering and the sciences. Designed for a two-semester undergraduate course, the text offers a true alternative to books published for past generations of students. It enables students majoring in a range of fields to obtain a solid foundation in differential equations. The text covers traditional material, along with novel approaches to mathematical modeling that harness the capabilities of numerical algorithms and popular computer software packages. It contains practical techniques for solving the equations as well as corresponding codes for numerical solvers. Many examples and exercises help students master effective solution techniques, including reliable numerical approximations. This book describes differential equations in the context of applications and presents the main techniques needed for modeling and systems analysis. It teaches students how to formulate a mathematical model, solve differential equations analytically and numerically, analyze them qualitatively, and interpret the results.

## Partial Differential Equations and Mathematica

Author: Prem K. Kythe,Michael R. Schäferkotter,Pratap Puri

Publisher: CRC Press

ISBN: 9781584883142

Category: Mathematics

Page: 440

View: 6866

Early training in the elementary techniques of partial differential equations is invaluable to students in engineering and the sciences as well as mathematics. However, to be effective, an undergraduate introduction must be carefully designed to be challenging, yet still reasonable in its demands. Judging from the first edition's popularity, instructors and students agree that despite the subject's complexity, it can be made fairly easy to understand. Revised and updated to reflect the latest version of Mathematica, Partial Differential Equations and Boundary Value Problems with Mathematica, Second Edition meets the needs of mathematics, science, and engineering students even better. While retaining systematic coverage of theory and applications, the authors have made extensive changes that improve the text's accessibility, thoroughness, and practicality. New in this edition: Upgraded and expanded Mathematica sections that include more exercises An entire chapter on boundary value problems More on inverse operators, Legendre functions, and Bessel functions Simplified treatment of Green's functions that make it more accessible to undergraduates A section on the numerical computation of Green's functions Mathemcatica codes for solving most of the problems discussed Boundary value problems from continuum mechanics, particularly on boundary layers and fluctuating flows Wave propagation and dispersion With its emphasis firmly on solution methods, this book is ideal for any mathematics curricula. It succeeds not only in preparing readers to meet the challenge of PDEs, but also in imparting the inherent beauty and applicability of the subject.

## Scientific Computing with Mathematica®

Mathematical Problems for Ordinary Differential Equations

Author: Addolorata Marasco,Antonio Romano

Publisher: Springer Science & Business Media

ISBN: 1461201519

Category: Mathematics

Page: 270

View: 6999

Many interesting behaviors of real physical, biological, economical, and chemical systems can be described by ordinary differential equations (ODEs). Scientific Computing with Mathematica for Ordinary Differential Equations provides a general framework useful for the applications, on the conceptual aspects of the theory of ODEs, as well as a sophisticated use of Mathematica software for the solutions of problems related to ODEs. In particular, a chapter is devoted to the use ODEs and Mathematica in the Dynamics of rigid bodies. Mathematical methods and scientific computation are dealt with jointly to supply a unified presentation. The main problems of ordinary differential equations such as, phase portrait, approximate solutions, periodic orbits, stability, bifurcation, and boundary problems are covered in an integrated fashion with numerous worked examples and computer program demonstrations using Mathematica. Topics and Features:*Explains how to use the Mathematica package ODE.m to support qualitative and quantitative problem solving *End-of- chapter exercise sets incorporating the use of Mathematica programs *Detailed description and explanation of the mathematical procedures underlying the programs written in Mathematica *Appendix describing the use of ten notebooks to guide the reader through all the exercises. This book is an essential text/reference for students, graduates and practitioners in applied mathematics and engineering interested in ODE's problems in both the qualitative and quantitative description of solutions with the Mathematica program. It is also suitable as a self-

## Introductory Differential Equations

with Boundary Value Problems, Student Solutions Manual (e-only)

Author: Martha L. Abell,James P. Braselton

ISBN: 9780123846655

Category: Mathematics

Page: 212

View: 5713

This text is for courses that are typically called (Introductory) Differential Equations, (Introductory) Partial Differential Equations, Applied Mathematics, and Fourier Series. Differential Equations is a text that follows a traditional approach and is appropriate for a first course in ordinary differential equations (including Laplace transforms) and a second course in Fourier series and boundary value problems. Some schools might prefer to move the Laplace transform material to the second course, which is why we have placed the chapter on Laplace transforms in its location in the text. Ancillaries like Differential Equations with Mathematica and/or Differential Equations with Maple would be recommended and/or required ancillaries. Because many students need a lot of pencil-and-paper practice to master the essential concepts, the exercise sets are particularly comprehensive with a wide range of exercises ranging from straightforward to challenging. Many different majors will require differential equations and applied mathematics, so there should be a lot of interest in an intro-level text like this. The accessible writing style will be good for non-math students, as well as for undergrad classes.

## Green’s Functions and Linear Differential Equations

Theory, Applications, and Computation

Author: Prem K. Kythe

Publisher: CRC Press

ISBN: 1439840091

Category: Mathematics

Page: 382

View: 1210

Green’s Functions and Linear Differential Equations: Theory, Applications, and Computation presents a variety of methods to solve linear ordinary differential equations (ODEs) and partial differential equations (PDEs). The text provides a sufficient theoretical basis to understand Green’s function method, which is used to solve initial and boundary value problems involving linear ODEs and PDEs. It also contains a large number of examples and exercises from diverse areas of mathematics, applied science, and engineering. Taking a direct approach, the book first unravels the mystery of the Dirac delta function and then explains its relationship to Green’s functions. The remainder of the text explores the development of Green’s functions and their use in solving linear ODEs and PDEs. The author discusses how to apply various approaches to solve initial and boundary value problems, including classical and general variations of parameters, Wronskian method, Bernoulli’s separation method, integral transform method, method of images, conformal mapping method, and interpolation method. He also covers applications of Green’s functions, including spherical and surface harmonics. Filled with worked examples and exercises, this robust, self-contained text fully explains the differential equation problems, includes graphical representations where necessary, and provides relevant background material. It is mathematically rigorous yet accessible enough for readers to grasp the beauty and power of the subject.

## Introduction to Mathematica® with Applications

Author: Marian Mureşan

Publisher: Springer

ISBN: 3319520032

Category: Computers

Page: 265

View: 5593

Starting with an introduction to the numerous features of Mathematica®, this book continues with more complex material. It provides the reader with lots of examples and illustrations of how the benefits of Mathematica® can be used. Composed of eleven chapters, it includes the following: A chapter on several sorting algorithms Functions (planar and solid) with many interesting examples Ordinary differential equations Advantages of Mathematica® dealing with the Pi number The power of Mathematica® working with optimal control problems Introduction to Mathematica® with Applications will appeal to researchers, professors and students requiring a computational tool.