Author: Stephen Lynch

Publisher: Springer

ISBN: 3319068202

Category: Mathematics

Page: 514

View: 6095

This textbook, now in its second edition, provides a broad introduction to both continuous and discrete dynamical systems, the theory of which is motivated by examples from a wide range of disciplines. It emphasizes applications and simulation utilizing MATLAB®, Simulink®, the Image Processing Toolbox® and the Symbolic Math toolbox®, including MuPAD. Features new to the second edition include · sections on series solutions of ordinary differential equations, perturbation methods, normal forms, Gröbner bases, and chaos synchronization; · chapters on image processing and binary oscillator computing; · hundreds of new illustrations, examples, and exercises with solutions; and · over eighty up-to-date MATLAB program files and Simulink model files available online. These files were voted MATLAB Central Pick of the Week in July 2013. The hands-on approach of Dynamical Systems with Applications using MATLAB, Second Edition, has minimal prerequisites, only requiring familiarity with ordinary differential equations. It will appeal to advanced undergraduate and graduate students, applied mathematicians, engineers, and researchers in a broad range of disciplines such as population dynamics, biology, chemistry, computing, economics, nonlinear optics, neural networks, and physics. Praise for the first edition Summing up, it can be said that this text allows the reader to have an easy and quick start to the huge field of dynamical systems theory. MATLAB/SIMULINK facilitate this approach under the aspect of learning by doing. —OR News/Operations Research Spectrum The MATLAB programs are kept as simple as possible and the author's experience has shown that this method of teaching using MATLAB works well with computer laboratory classes of small sizes.... I recommend ‘Dynamical Systems with Applications using MATLAB’ as a good handbook for a diverse readership: graduates and professionals in mathematics, physics, science and engineering. —Mathematica
Read More

Author: Mustafa R.S. Kulenovic,Orlando Merino

Publisher: CRC Press

ISBN: 1420035355

Category: Mathematics

Page: 360

View: 6326

Following the work of Yorke and Li in 1975, the theory of discrete dynamical systems and difference equations developed rapidly. The applications of difference equations also grew rapidly, especially with the introduction of graphical-interface software that can plot trajectories, calculate Lyapunov exponents, plot bifurcation diagrams, and find basins of attraction. Modern computer algebra systems have opened the door to the use of symbolic calculation for studying difference equations. This book offers an introduction to discrete dynamical systems and difference equations and presents the Dynamica software. Developed by the authors and based on Mathematica, Dynamica provides an easy-to-use collection of algebraic, numerical, and graphical tools and techniques that allow users to quickly gain the ability to: Find and classify the stability character of equilibrium and periodic points Perform semicycle analysis of solutions Calculate and visualize invariants Calculate and visualize Lyapunov functions and numbers Plot bifurcation diagrams Visualize stable and unstable manifolds Calculate Box Dimension While it presents the essential theoretical concepts and results, the book's emphasis is on using the software. The authors present two sets of Dynamica sessions: one that serves as a tutorial of the different techniques, the other features case studies of well-known difference equations. Dynamica and notebooks corresponding to particular chapters are available for download from the Internet.
Read More

Author: Richard Holmgren

Publisher: Springer Science & Business Media

ISBN: 9780387947808

Category: Mathematics

Page: 223

View: 2508

Discrete dynamical systems are essentially iterated functions. Given the ease with which computers can do iteration, it is now possible for anyone with access to a personal computer to generate beautiful images whose roots lie in discrete dynamical systems. Images of Mandelbrot and Julia sets abound in publications both mathematical and not. The mathematics behind the pictures are beautiful in their own right and are the subject of this text. The level of the presentation is suitable for advanced undergraduates with a year of calculus behind them. Students in the author's courses using this material have come from numerous disciplines; many have been majors in other disciplines who are taking mathematics courses out of general interest. Concepts from calculus are reviewed as necessary. Mathematica programs that illustrate the dynamics and that will aid the student in doing the exercises are included in an appendix.
Read More

Author: Eugene M. Izhikevich

Publisher: MIT Press

ISBN: 0262090430

Category: Medical

Page: 441

View: 1020

In order to model neuronal behavior or to interpret the results of modeling studies, neuroscientists must call upon methods of nonlinear dynamics. This book offers an introduction to nonlinear dynamical systems theory for researchers and graduate students in neuroscience. It also provides an overview of neuroscience for mathematicians who want to learn the basic facts of electrophysiology. Dynamical Systems in Neuroscience presents a systematic study of the relationship of electrophysiology, nonlinear dynamics, and computational properties of neurons. It emphasizes that information processing in the brain depends not only on the electrophysiological properties of neurons but also on their dynamical properties. The book introduces dynamical systems, starting with one- and two-dimensional Hodgkin-Huxley-type models and continuing to a description of bursting systems. Each chapter proceeds from the simple to the complex, and provides sample problems at the end. The book explains all necessary mathematical concepts using geometrical intuition; it includes many figures and few equations, making it especially suitable for non-mathematicians. Each concept is presented in terms of both neuroscience and mathematics, providing a link between the two disciplines. Nonlinear dynamical systems theory is at the core of computational neuroscience research, but it is not a standard part of the graduate neuroscience curriculum—or taught by math or physics department in a way that is suitable for students of biology. This book offers neuroscience students and researchers a comprehensive account of concepts and methods increasingly used in computational neuroscience. An additional chapter on synchronization, with more advanced material, can be found at the author's website, www.izhikevich.com.
Read More

With Applications in Science and Engineering

Author: Saber N. Elaydi

Publisher: CRC Press

ISBN: 1420011049

Category: Mathematics

Page: 440

View: 9554

While maintaining the lucidity of the first edition, Discrete Chaos, Second Edition: With Applications in Science and Engineering now includes many recent results on global stability, bifurcation, chaos, and fractals. The first five chapters provide the most comprehensive material on discrete dynamical systems, including trace-determinant stability, bifurcation analysis, and the detailed analysis of the center manifold theory. This edition also covers L-systems and the periodic structure of the bulbs in the Mandelbrot set as well as new applications in biology, chemistry, and physics. The principal improvements to this book are the additions of PHASER software on an accompanying CD-ROM and the MapleTM and Mathematica® code available for download online. Incorporating numerous new topics and technology not found in similar texts, Discrete Chaos, Second Edition presents a thorough, up-to-date treatment of the theory and applications of discrete dynamical systems.
Read More

Optimal Trading in Stocks and Options

Author: Srdjan Stojanovic

Publisher: Springer Science & Business Media

ISBN: 1461200431

Category: Business & Economics

Page: 481

View: 6945

Given the explosion of interest in mathematical methods for solving problems in finance and trading, a great deal of research and development is taking place in universities, large brokerage firms, and in the supporting trading software industry. Mathematical advances have been made both analytically and numerically in finding practical solutions. This book provides a comprehensive overview of existing and original material, about what mathematics when allied with Mathematica can do for finance. Sophisticated theories are presented systematically in a user-friendly style, and a powerful combination of mathematical rigor and Mathematica programming. Three kinds of solution methods are emphasized: symbolic, numerical, and Monte-- Carlo. Nowadays, only good personal computers are required to handle the symbolic and numerical methods that are developed in this book. Key features: * No previous knowledge of Mathematica programming is required * The symbolic, numeric, data management and graphic capabilities of Mathematica are fully utilized * Monte--Carlo solutions of scalar and multivariable SDEs are developed and utilized heavily in discussing trading issues such as Black--Scholes hedging * Black--Scholes and Dupire PDEs are solved symbolically and numerically * Fast numerical solutions to free boundary problems with details of their Mathematica realizations are provided * Comprehensive study of optimal portfolio diversification, including an original theory of optimal portfolio hedging under non-Log-Normal asset price dynamics is presented The book is designed for the academic community of instructors and students, and most importantly, will meet the everyday trading needs of quantitatively inclined professional and individual investors.
Read More

Author: G.C. Layek

Publisher: Springer

ISBN: 8132225562

Category: Mathematics

Page: 622

View: 7141

The book discusses continuous and discrete systems in systematic and sequential approaches for all aspects of nonlinear dynamics. The unique feature of the book is its mathematical theories on flow bifurcations, oscillatory solutions, symmetry analysis of nonlinear systems and chaos theory. The logically structured content and sequential orientation provide readers with a global overview of the topic. A systematic mathematical approach has been adopted, and a number of examples worked out in detail and exercises have been included. Chapters 1–8 are devoted to continuous systems, beginning with one-dimensional flows. Symmetry is an inherent character of nonlinear systems, and the Lie invariance principle and its algorithm for finding symmetries of a system are discussed in Chap. 8. Chapters 9–13 focus on discrete systems, chaos and fractals. Conjugacy relationship among maps and its properties are described with proofs. Chaos theory and its connection with fractals, Hamiltonian flows and symmetries of nonlinear systems are among the main focuses of this book. Over the past few decades, there has been an unprecedented interest and advances in nonlinear systems, chaos theory and fractals, which is reflected in undergraduate and postgraduate curricula around the world. The book is useful for courses in dynamical systems and chaos, nonlinear dynamics, etc., for advanced undergraduate and postgraduate students in mathematics, physics and engineering.
Read More

Author: David McMahon,Daniel M. Topa

Publisher: CRC Press

ISBN: 9781420010398

Category: Mathematics

Page: 736

View: 992

Because of its large command structure and intricate syntax, Mathematica can be difficult to learn. Wolfram's Mathematica manual, while certainly comprehensive, is so large and complex that when trying to learn the software from scratch -- or find answers to specific questions -- one can be quickly overwhelmed. A Beginner's Guide to Mathematica offers a simple, step-by-step approach to help math-savvy newcomers build the skills needed to use the software in practice. Concise and easy to use, this book teaches by example and points out potential pitfalls along the way. The presentation starts with simple problems and discusses multiple solution paths, ranging from basic to elegant, to gradually introduce the Mathematica toolkit. More challenging and eventually cutting-edge problems follow. The authors place high value on notebook and file system organization, cross-platform capabilities, and data reading and writing. The text features an array of error messages you will likely encounter and clearly describes how to deal with those situations. While it is by no means exhaustive, this book offers a non-threatening introduction to Mathematica that will teach you the aspects needed for many practical applications, get you started on performing specific, relatively simple tasks, and enable you to build on this experience and move on to more real-world problems.
Read More

Phase Diagrams and Their Economic Application

Author: Ronald Shone

Publisher: Cambridge University Press

ISBN: 9780521017039

Category: Business & Economics

Page: 708

View: 8701

The substantially revised and restructured 2nd edition of Ron Shone's successful textbook Economic Dynamics.
Read More

Author: Richard H. Enns,George C. McGuire

Publisher: Springer Science & Business Media

ISBN: 1461202116

Category: Mathematics

Page: 695

View: 9448

Nonlinear physics continues to be an area of dynamic modern research, with applications to physics, engineering, chemistry, mathematics, computer science, biology, medicine and economics. In this text extensive use is made of the Mathematica computer algebra system. No prior knowledge of Mathematica or programming is assumed. This book includes 33 experimental activities that are designed to deepen and broaden the reader's understanding of nonlinear physics. These activities are correlated with Part I, the theoretical framework of the text.
Read More

Problem Solving Using Mathematica®

Author: Sergey P. Kiselev,Evgenii V. Vorozhtsov,Vasily M. Fomin

Publisher: Birkhäuser

ISBN: 3319661493

Category: Mathematics

Page: 575

View: 8287

This textbook presents the basic concepts and methods of fluid mechanics, including Lagrangian and Eulerian descriptions, tensors of stresses and strains, continuity, momentum, energy, thermodynamics laws, and similarity theory. The models and their solutions are presented within a context of the mechanics of multiphase media. The treatment fully utilizes the computer algebra and software system Mathematica® to both develop concepts and help the reader to master modern methods of solving problems in fluid mechanics. Topics and features: Glossary of over thirty Mathematica® computer programs Extensive, self-contained appendix of Mathematica® functions and their use Chapter coverage of mechanics of multiphase heterogeneous media Detailed coverage of theory of shock waves in gas dynamics Thorough discussion of aerohydrodynamics of ideal and viscous fluids an d gases Complete worked examples with detailed solutions Problem-solving approach Foundations of Fluid Mechanics with Applications is a complete and accessible text or reference for graduates and professionals in mechanics, applied mathematics, physical sciences, materials science, and engineering. It is an essential resource for the study and use of modern solution methods for problems in fluid mechanics and the underlying mathematical models. The present, softcover reprint is designed to make this classic textbook available to a wider audience.
Read More

Author: Roger Temam

Publisher: Springer Science & Business Media

ISBN: 1461206456

Category: Mathematics

Page: 650

View: 7164

In this book the author presents the dynamical systems in infinite dimension, especially those generated by dissipative partial differential equations. This book attempts a systematic study of infinite dimensional dynamical systems generated by dissipative evolution partial differential equations arising in mechanics and physics and in other areas of sciences and technology. This second edition has been updated and extended.
Read More

Author: Henk Broer,Floris Takens

Publisher: Springer Science & Business Media

ISBN: 9781441968708

Category: Mathematics

Page: 313

View: 6400

Over the last four decades there has been extensive development in the theory of dynamical systems. This book aims at a wide audience where the first four chapters have been used for an undergraduate course in Dynamical Systems. Material from the last two chapters and from the appendices has been used quite a lot for master and PhD courses. All chapters are concluded by an exercise section. The book is also directed towards researchers, where one of the challenges is to help applied researchers acquire background for a better understanding of the data that computer simulation or experiment may provide them with the development of the theory.
Read More

Author: Gerald Teschl

Publisher: American Mathematical Soc.

ISBN: 0821883283

Category: Mathematics

Page: 356

View: 3788

This book provides a self-contained introduction to ordinary differential equations and dynamical systems suitable for beginning graduate students. The first part begins with some simple examples of explicitly solvable equations and a first glance at qualitative methods. Then the fundamental results concerning the initial value problem are proved: existence, uniqueness, extensibility, dependence on initial conditions. Furthermore, linear equations are considered, including the Floquet theorem, and some perturbation results. As somewhat independent topics, the Frobenius method for linear equations in the complex domain is established and Sturm-Liouville boundary value problems, including oscillation theory, are investigated. The second part introduces the concept of a dynamical system. The Poincare-Bendixson theorem is proved, and several examples of planar systems from classical mechanics, ecology, and electrical engineering are investigated. Moreover, attractors, Hamiltonian systems, the KAM theorem, and periodic solutions are discussed. Finally, stability is studied, including the stable manifold and the Hartman-Grobman theorem for both continuous and discrete systems. The third part introduces chaos, beginning with the basics for iterated interval maps and ending with the Smale-Birkhoff theorem and the Melnikov method for homoclinic orbits. The text contains almost three hundred exercises. Additionally, the use of mathematical software systems is incorporated throughout, showing how they can help in the study of differential equations.
Read More

Theory and Application Using Mathematica and Matlab

Author: S Rajasekaran

Publisher: Elsevier

ISBN: 1845695739

Category: Technology & Engineering

Page: 896

View: 1115

Given the risk of earthquakes in many countries, knowing how structural dynamics can be applied to earthquake engineering of structures, both in theory and practice, is a vital aspect of improving the safety of buildings and structures. It can also reduce the number of deaths and injuries and the amount of property damage. The book begins by discussing free vibration of single-degree-of-freedom (SDOF) systems, both damped and undamped, and forced vibration (harmonic force) of SDOF systems. Response to periodic dynamic loadings and impulse loads are also discussed, as are two degrees of freedom linear system response methods and free vibration of multiple degrees of freedom. Further chapters cover time history response by natural mode superposition, numerical solution methods for natural frequencies and mode shapes and differential quadrature, transformation and Finite Element methods for vibration problems. Other topics such as earthquake ground motion, response spectra and earthquake analysis of linear systems are discussed. Structural dynamics of earthquake engineering: theory and application using Mathematica and Matlab provides civil and structural engineers and students with an understanding of the dynamic response of structures to earthquakes and the common analysis techniques employed to evaluate these responses. Worked examples in Mathematica and Matlab are given. Explains the dynamic response of structures to earthquakes including periodic dynamic loadings and impulse loads Examines common analysis techniques such as natural mode superposition, the finite element method and numerical solutions Investigates this important topic in terms of both theory and practise with the inclusion of practical exercise and diagrams
Read More

Author: James D. Meiss

Publisher: SIAM

ISBN: 161197464X

Category: Mathematics

Page: 392

View: 964

Differential equations are the basis for models of any physical systems that exhibit smooth change. This book combines much of the material found in a traditional course on ordinary differential equations with an introduction to the more modern theory of dynamical systems. Applications of this theory to physics, biology, chemistry, and engineering are shown through examples in such areas as population modeling, fluid dynamics, electronics, and mechanics.÷ Differential Dynamical Systems begins with coverage of linear systems, including matrix algebra; the focus then shifts to foundational material on nonlinear differential equations, making heavy use of the contraction-mapping theorem. Subsequent chapters deal specifically with dynamical systems concepts?flow, stability, invariant manifolds, the phase plane, bifurcation, chaos, and Hamiltonian dynamics. This new edition contains several important updates and revisions throughout the book. Throughout the book, the author includes exercises to help students develop an analytical and geometrical understanding of dynamics. Many of the exercises and examples are based on applications and some involve computation; an appendix offers simple codes written in Maple?, Mathematica?, and MATLAB? software to give students practice with computation applied to dynamical systems problems.
Read More

Author: Edward R. Scheinerman

Publisher: Courier Corporation

ISBN: 0486275329

Category: Mathematics

Page: 408

View: 5475

This text is designed for those who wish to study mathematics beyond linear algebra but are unready for abstract material. Rather than a theorem-proof-corollary exposition, it stresses geometry, intuition, and dynamical systems. 1996 edition.
Read More

Author: Oscar Castillo,Patricia Melin

Publisher: Physica

ISBN: 3790818321

Category: Computers

Page: 224

View: 8488

This book presents a unified view of modelling, simulation, and control of non linear dynamical systems using soft computing techniques and fractal theory. Our particular point of view is that modelling, simulation, and control are problems that cannot be considered apart, because they are intrinsically related in real world applications. Control of non-linear dynamical systems cannot be achieved if we don't have the appropriate model for the system. On the other hand, we know that complex non-linear dynamical systems can exhibit a wide range of dynamic behaviors ( ranging from simple periodic orbits to chaotic strange attractors), so the problem of simulation and behavior identification is a very important one. Also, we want to automate each of these tasks because in this way it is more easy to solve a particular problem. A real world problem may require that we use modelling, simulation, and control, to achieve the desired level of performance needed for the particular application.
Read More

Theory and Practice for Science, Mathematics, and Engineering

Author: Roman E. Maeder

Publisher: Cambridge University Press

ISBN: 9780521663953

Category: Computers

Page: 389

View: 6007

This introductory course shows scientists and engineers how Mathematica can be used to do scientific computations.
Read More