Author: Eberhard Freitag,Reinhardt Kiehl

Publisher: Springer Science & Business Media

ISBN: 3662025418

Category: Mathematics

Page: 320

View: 8855

Some years ago a conference on l-adic cohomology in Oberwolfach was held with the aim of reaching an understanding of Deligne's proof of the Weil conjec tures. For the convenience of the speakers the present authors - who were also the organisers of that meeting - prepared short notes containing the central definitions and ideas of the proofs. The unexpected interest for these notes and the various suggestions to publish them encouraged us to work somewhat more on them and fill out the gaps. Our aim was to develop the theory in as self contained and as short a manner as possible. We intended especially to provide a complete introduction to etale and l-adic cohomology theory including the monodromy theory of Lefschetz pencils. Of course, all the central ideas are due to the people who created the theory, especially Grothendieck and Deligne. The main references are the SGA-notes [64-69]. With the kind permission of Professor J. A. Dieudonne we have included in the book that finally resulted his excellent notes on the history of the Weil conjectures, as a second introduction. Our original notes were written in German. However, we finally followed the recommendation made variously to publish the book in English. We had the good fortune that Professor W. Waterhouse and his wife Betty agreed to translate our manuscript. We want to thank them very warmly for their willing involvement in such a tedious task. We are very grateful to the staff of Springer-Verlag for their careful work.
Read More

Author: Bjorn Poonen

Publisher: American Mathematical Soc.

ISBN: 1470437732

Category: Algebraic varieties

Page: 337

View: 3712

This book is motivated by the problem of determining the set of rational points on a variety, but its true goal is to equip readers with a broad range of tools essential for current research in algebraic geometry and number theory. The book is unconventional in that it provides concise accounts of many topics instead of a comprehensive account of just one—this is intentionally designed to bring readers up to speed rapidly. Among the topics included are Brauer groups, faithfully flat descent, algebraic groups, torsors, étale and fppf cohomology, the Weil conjectures, and the Brauer-Manin and descent obstructions. A final chapter applies all these to study the arithmetic of surfaces. The down-to-earth explanations and the over 100 exercises make the book suitable for use as a graduate-level textbook, but even experts will appreciate having a single source covering many aspects of geometry over an unrestricted ground field and containing some material that cannot be found elsewhere.
Read More

Author: Reinhardt Kiehl,Rainer Weissauer

Publisher: Springer Science & Business Media

ISBN: 3662045761

Category: Mathematics

Page: 375

View: 9182

The authors describe the important generalization of the original Weil conjectures, as given by P. Deligne in his fundamental paper "La conjecture de Weil II". The authors follow the important and beautiful methods of Laumon and Brylinski which lead to a simplification of Deligne's theory. Deligne's work is closely related to the sheaf theoretic theory of perverse sheaves. In this framework Deligne's results on global weights and his notion of purity of complexes obtain a satisfactory and final form. Therefore the authors include the complete theory of middle perverse sheaves. In this part, the l-adic Fourier transform is introduced as a technique providing natural and simple proofs. To round things off, there are three chapters with significant applications of these theories.
Read More

Author: Valerij V. Kozlov

Publisher: Springer Science & Business Media

ISBN: 3642783937

Category: Mathematics

Page: 378

View: 8991

John Hornstein has written about the author's theorem on nonintegrability of geodesic flows on closed surfaces of genus greater than one: "Here is an example of how differential geometry, differential and algebraic topology, and Newton's laws make music together" (Amer. Math. Monthly, November 1989). Kozlov's book is a systematic introduction to the problem of exact integration of equations of dynamics. The key to the solution is to find nontrivial symmetries of Hamiltonian systems. After Poincaré's work it became clear that topological considerations and the analysis of resonance phenomena play a crucial role in the problem on the existence of symmetry fields and nontrivial conservation laws.
Read More

Author: Victor Havin,Burglind Jöricke

Publisher: Springer Science & Business Media

ISBN: 3642783775

Category: Mathematics

Page: 547

View: 1551

The present book is a collection of variations on a theme which can be summed up as follows: It is impossible for a non-zero function and its Fourier transform to be simultaneously very small. In other words, the approximate equalities x :::::: y and x :::::: fj cannot hold, at the same time and with a high degree of accuracy, unless the functions x and yare identical. Any information gained about x (in the form of a good approximation y) has to be paid for by a corresponding loss of control on x, and vice versa. Such is, roughly speaking, the import of the Uncertainty Principle (or UP for short) referred to in the title ofthis book. That principle has an unmistakable kinship with its namesake in physics - Heisenberg's famous Uncertainty Principle - and may indeed be regarded as providing one of mathematical interpretations for the latter. But we mention these links with Quantum Mechanics and other connections with physics and engineering only for their inspirational value, and hasten to reassure the reader that at no point in this book will he be led beyond the world of purely mathematical facts. Actually, the portion of this world charted in our book is sufficiently vast, even though we confine ourselves to trigonometric Fourier series and integrals (so that "The U. P. in Fourier Analysis" might be a slightly more appropriate title than the one we chose).
Read More

Author: Gerard van der Geer

Publisher: Springer Science & Business Media

ISBN: 3642615538

Category: Mathematics

Page: 294

View: 8597

Over the last 15 years important results have been achieved in the field of Hilbert Modular Varieties. Though the main emphasis of this book is on the geometry of Hilbert modular surfaces, both geometric and arithmetic aspects are treated. An abundance of examples - in fact a whole chapter - completes this competent presentation of the subject. This Ergebnisbericht will soon become an indispensible tool for graduate students and researchers in this field.
Read More

Author: Günter Tamme

Publisher: Springer Science & Business Media

ISBN: 3642784216

Category: Mathematics

Page: 186

View: 6226

A succinct introduction to etale cohomology. Well-presented and chosen this will be a most welcome addition to the algebraic geometrist's library.
Read More

Author: Siegfried Bosch,Werner Lütkebohmert,Michel Raynaud

Publisher: Springer Science & Business Media

ISBN: 3642514383

Category: Mathematics

Page: 328

View: 8512

Néron models were invented by A. Néron in the early 1960s in order to study the integral structure of abelian varieties over number fields. Since then, arithmeticians and algebraic geometers have applied the theory of Néron models with great success. Quite recently, new developments in arithmetic algebraic geometry have prompted a desire to understand more about Néron models, and even to go back to the basics of their construction. The authors have taken this as their incentive to present a comprehensive treatment of Néron models. This volume of the renowned "Ergebnisse" series provides a detailed demonstration of the construction of Néron models from the point of view of Grothendieck's algebraic geometry. In the second part of the book the relationship between Néron models and the relative Picard functor in the case of Jacobian varieties is explained. The authors helpfully remind the reader of some important standard techniques of algebraic geometry. A special chapter surveys the theory of the Picard functor.
Read More

Author: Lei Fu

Publisher: World Scientific

ISBN: 9814307726

Category: Mathematics

Page: 611

View: 4703

Etale cohomology is an important branch in arithmetic geometry. This book covers the main materials in SGA 1, SGA 4, SGA 4 1/2 and SGA 5 on etale cohomology theory, which includes decent theory, etale fundamental groups, Galois cohomology, etale cohomology, derived categories, base change theorems, duality, and l-adic cohomology. The prerequisites for reading this book are basic algebraic geometry and advanced commutative algebra.
Read More

Author: Michael D. Fried,Moshe Jarden

Publisher: N.A

ISBN: 9783540166405

Category: Mathematics

Page: 458

View: 6521

Read More

Author: A.I. Kostrikin

Publisher: Springer

ISBN: 9783540506027

Category: Mathematics

Page: 222

View: 2133

Perhaps it is not inappropriate for me to begin with the comment that this book has been an interesting challenge to the translator. It is most unusual, in a text of this type, in that the style is racy, with many literary allusions and witticisms: not the easiest to translate, but a source of inspiration to continue through material that could daunt by its combinatorial complexity. Moreover, there have been many changes to the text during the translating period, reflecting the ferment that the subject of the restricted Burnside problem is passing through at present. I concur with Professor Kostrikin's "Note in Proof', where he describes the book as fortunate. I would put it slightly differently: its appearance has surely been partly instrumental in inspiring much endeavour, including such things as the paper of A. I. Adian and A. A. Razborov producing the first published recursive upper bound for the order of the universal finite group B(d,p) of prime exponent (the English version contains a different treatment of this result, due to E. I. Zel'manov); M. R. Vaughan-Lee's new approach to the subject; and finally, the crowning achievement of Zel'manov in establishing RBP for all prime-power exponents, thereby (via the classification theorem for finite simple groups and Hall-Higman) settling it for all exponents. The book is encyclopaedic in its coverage of facts and problems on RBP, and will continue to have an important influence in the area.
Read More

Author: Siegfried Bosch,Werner Lütkebohmert,Michel Raynaud

Publisher: Springer

ISBN: 9783540505877

Category: Mathematics

Page: 328

View: 7452

Néron models were invented by A. Néron in the early 1960s in order to study the integral structure of abelian varieties over number fields. Since then, arithmeticians and algebraic geometers have applied the theory of Néron models with great success. Quite recently, new developments in arithmetic algebraic geometry have prompted a desire to understand more about Néron models, and even to go back to the basics of their construction. The authors have taken this as their incentive to present a comprehensive treatment of Néron models. This volume of the renowned "Ergebnisse" series provides a detailed demonstration of the construction of Néron models from the point of view of Grothendieck's algebraic geometry. In the second part of the book the relationship between Néron models and the relative Picard functor in the case of Jacobian varieties is explained. The authors helpfully remind the reader of some important standard techniques of algebraic geometry. A special chapter surveys the theory of the Picard functor.
Read More

The Homotopy Principle in Complex Analysis

Author: Franc Forstnerič

Publisher: Springer

ISBN: 3319610589

Category: Mathematics

Page: 562

View: 2266

This book, now in a carefully revised second edition, provides an up-to-date account of Oka theory, including the classical Oka-Grauert theory and the wide array of applications to the geometry of Stein manifolds. Oka theory is the field of complex analysis dealing with global problems on Stein manifolds which admit analytic solutions in the absence of topological obstructions. The exposition in the present volume focuses on the notion of an Oka manifold introduced by the author in 2009. It explores connections with elliptic complex geometry initiated by Gromov in 1989, with the Andersén-Lempert theory of holomorphic automorphisms of complex Euclidean spaces and of Stein manifolds with the density property, and with topological methods such as homotopy theory and the Seiberg-Witten theory. Researchers and graduate students interested in the homotopy principle in complex analysis will find this book particularly useful. It is currently the only work that offers a comprehensive introduction to both the Oka theory and the theory of holomorphic automorphisms of complex Euclidean spaces and of other complex manifolds with large automorphism groups./div
Read More

Author: James S. Milne

Publisher: Princeton University Press

ISBN: 1400883989

Category: Mathematics

Page: 344

View: 6747

One of the most important mathematical achievements of the past several decades has been A. Grothendieck's work on algebraic geometry. In the early 1960s, he and M. Artin introduced étale cohomology in order to extend the methods of sheaf-theoretic cohomology from complex varieties to more general schemes. This work found many applications, not only in algebraic geometry, but also in several different branches of number theory and in the representation theory of finite and p-adic groups. Yet until now, the work has been available only in the original massive and difficult papers. In order to provide an accessible introduction to étale cohomology, J. S. Milne offers this more elementary account covering the essential features of the theory. The author begins with a review of the basic properties of flat and étale morphisms and of the algebraic fundamental group. The next two chapters concern the basic theory of étale sheaves and elementary étale cohomology, and are followed by an application of the cohomology to the study of the Brauer group. After a detailed analysis of the cohomology of curves and surfaces, Professor Milne proves the fundamental theorems in étale cohomology -- those of base change, purity, Poincaré duality, and the Lefschetz trace formula. He then applies these theorems to show the rationality of some very general L-series. Originally published in 1980. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Read More

Grothendieck's FGA Explained

Author: Barbara Fantechi

Publisher: American Mathematical Soc.

ISBN: 0821842455

Category: Mathematics

Page: 339

View: 505

Alexander Grothendieck introduced many concepts into algebraic geometry; they turned out to be astoundingly powerful and productive and truly revolutionized the subject. Grothendieck sketched his new theories in a series of talks at the Seminaire Bourbaki between 1957 and 1962 and collected his write-ups in a volume entitled ``Fondements de la Geometrie Algebrique,'' known as FGA. Much of FGA is now common knowledge; however, some of FGA is less well known, and its full scope is familiar to few. The present book resulted from the 2003 ``Advanced School in Basic Algebraic Geometry'' at the ICTP in Trieste, Italy. The book aims to fill in Grothendieck's brief sketches. There are four themes: descent theory, Hilbert and Quot schemes, the formal existence theorem, and the Picard scheme. Most results are proved in full detail; furthermore, newer ideas are introduced to promote understanding, and many connections are drawn to newer developments. The main prerequisite is a thorough acquaintance with basic scheme theory. Thus this book is a valuable resource for anyone doing algebraic geometry.
Read More

Author: Annette Huber,Stefan Müller-Stach

Publisher: Springer

ISBN: 3319509268

Category: Mathematics

Page: 372

View: 7306

This book casts the theory of periods of algebraic varieties in the natural setting of Madhav Nori’s abelian category of mixed motives. It develops Nori’s approach to mixed motives from scratch, thereby filling an important gap in the literature, and then explains the connection of mixed motives to periods, including a detailed account of the theory of period numbers in the sense of Kontsevich-Zagier and their structural properties. Period numbers are central to number theory and algebraic geometry, and also play an important role in other fields such as mathematical physics. There are long-standing conjectures about their transcendence properties, best understood in the language of cohomology of algebraic varieties or, more generally, motives. Readers of this book will discover that Nori’s unconditional construction of an abelian category of motives (over fields embeddable into the complex numbers) is particularly well suited for this purpose. Notably, Kontsevich's formal period algebra represents a torsor under the motivic Galois group in Nori's sense, and the period conjecture of Kontsevich and Zagier can be recast in this setting. Periods and Nori Motives is highly informative and will appeal to graduate students interested in algebraic geometry and number theory as well as researchers working in related fields. Containing relevant background material on topics such as singular cohomology, algebraic de Rham cohomology, diagram categories and rigid tensor categories, as well as many interesting examples, the overall presentation of this book is self-contained.
Read More