Author: Clinton Sheppard

Publisher: N.A

ISBN: 9781732029804

Category: Computers

Page: 532

View: 1078

Get a hands-on introduction to machine learning with genetic algorithms using Python. Genetic algorithms are one of the tools you can use to apply machine learning to finding good, sometimes even optimal, solutions to problems that have billions of potential solutions. This book gives you experience making genetic algorithms work for you, using easy-to-follow example projects that you can fall back upon when learning to use other machine learning tools and techniques. The step-by-step tutorials build your skills from Hello World! to optimizing one genetic algorithm with another, and finally genetic programming; thus preparing you to apply genetic algorithms to problems in your own field of expertise. Python is a high-level, low ceremony and powerful language whose code can be easily understood even by entry-level programmers. If you have experience with another programming language then you should have no difficulty learning Python by induction. Souce code: https: //github.com/handcraftsman/GeneticAlgorithmsWithPython
Read More

Author: Clinton Sheppard

Publisher: Createspace Independent Publishing Platform

ISBN: 9781540324009

Category:

Page: 532

View: 9043

Get a hands-on introduction to machine learning with genetic algorithms using Python. Step-by-step tutorials build your skills from Hello World! to optimizing one genetic algorithm with another, and finally genetic programming; thus preparing you to apply genetic algorithms to problems in your own field of expertise. Genetic algorithms are one of the tools you can use to apply machine learning to finding good, sometimes even optimal, solutions to problems that have billions of potential solutions. This book gives you experience making genetic algorithms work for you, using easy-to-follow example projects that you can fall back upon when learning to use other machine learning tools and techniques. Each chapter is a step-by-step tutorial that helps to build your skills at using genetic algorithms to solve problems using Python. Python is a high-level, low ceremony and powerful language whose code can be easily understood even by entry-level programmers. If you have experience with another programming language then you should have no difficulty learning Python by induction. Contents A brief introduction to genetic algorithms Chapter 1: Hello World! - Guess a password given the number of correct letters in the guess. Build a mutation engine. Chapter 2: One Max Problem - Produce an array of bits where all are 1s. Expands the engine to work with any type of gene. Chapter 3: Sorted Numbers - Produce a sorted integer array. Demonstrates handling multiple fitness goals and constraints between genes. Chapter 4: The 8 Queens Puzzle - Find safe Queen positions on an 8x8 board and then expand to NxN. Demonstrates the difference between phenotype and genotype. Chapter 5: Graph Coloring - Color a map of the United States using only 4 colors. Introduces standard data sets and working with files. Also introduces using rules to work with gene constraints. Chapter 6: Card Problem - More gene constraints. Introduces custom mutation, memetic algorithms, and the sum-of-difference technique. Also demonstrates a chromosome where the way a gene is used depends on its position in the gene array. Chapter 7: Knights Problem - Find the minimum number of knights required to attack all positions on a board. Introduces custom genes and gene-array creation. Also demonstrates local minimums and maximums. Chapter 8: Magic Squares - Find squares where all the rows, columns and both diagonals of an NxN matrix have the same sum. Introduces simulated annealing. Chapter 9: Knapsack Problem - Optimize the content of a container for one or more variables. Introduces branch and bound and variable length chromosomes. Chapter 10: Solving Linear Equations - Find the solutions to linear equations with 2, 3 and 4 unknowns. Branch and bound variation. Reinforces genotype flexibility. Chapter 11: Generating Sudoku - A guided exercise in generating Sudoku puzzles. Chapter 12: Traveling Salesman Problem (TSP) - Find the optimal route to visit cities. Introduces crossover and a pool of parents. Chapter 13: Approximating Pi - Find the two 10-bit numbers whose dividend is closest to Pi. Introduces using one genetic algorithm to tune another. Chapter 14: Equation Generation - Find the shortest equation that produces a specific result using addition, subtraction, multiplication, etc. Introduces symbolic genetic programming. Chapter 15: The Lawnmower Problem - Generate a series of instructions that cause a lawnmower to cut a field of grass. Genetic programming with control structures, objects and automatically defined functions (ADFs). Chapter 16: Logic Circuits - Generate circuits that behave like basic gates, gate combinations and finally a 2-bit adder. Introduces tree nodes and hill climbing. Chapter 17: Regular Expressions - Find regular expressions that match wanted strings. Introduces chromosome repair and growth control. Chapter 18: Tic-tac-toe - Create rules for playing the game without losing. Introduces tournament selection.
Read More

Author: Melanie Mitchell

Publisher: MIT Press

ISBN: 9780262631853

Category: Computers

Page: 209

View: 4983

Genetic algorithms are used in science and engineering for problem solving and as computational models. This brief introduction enables readers to implement and experiment with genetic algorithms on their own. The descriptions of applications and modeling projects stretch beyond the boundaries of computer science to include systems theory, game theory, biology, ecology, and population genetics. 20 illustrations.
Read More

Author: Lee Jacobson,Burak Kanber

Publisher: Apress

ISBN: 1484203283

Category: Computers

Page: 154

View: 556

Genetic Algorithms in Java Basics is a brief introduction to solving problems using genetic algorithms, with working projects and solutions written in the Java programming language. This brief book will guide you step-by-step through various implementations of genetic algorithms and some of their common applications, with the aim to give you a practical understanding allowing you to solve your own unique, individual problems. After reading this book you will be comfortable with the language specific issues and concepts involved with genetic algorithms and you'll have everything you need to start building your own. Genetic algorithms are frequently used to solve highly complex real world problems and with this book you too can harness their problem solving capabilities. Understanding how to utilize and implement genetic algorithms is an essential tool in any respected software developers toolkit. So step into this intriguing topic and learn how you too can improve your software with genetic algorithms, and see real Java code at work which you can develop further for your own projects and research. Guides you through the theory behind genetic algorithms Explains how genetic algorithms can be used for software developers trying to solve a range of problems Provides a step-by-step guide to implementing genetic algorithms in Java
Read More

Author: Oliver Kramer

Publisher: Springer

ISBN: 331952156X

Category: Computers

Page: 92

View: 4904

This book introduces readers to genetic algorithms (GAs) with an emphasis on making the concepts, algorithms, and applications discussed as easy to understand as possible. Further, it avoids a great deal of formalisms and thus opens the subject to a broader audience in comparison to manuscripts overloaded by notations and equations. The book is divided into three parts, the first of which provides an introduction to GAs, starting with basic concepts like evolutionary operators and continuing with an overview of strategies for tuning and controlling parameters. In turn, the second part focuses on solution space variants like multimodal, constrained, and multi-objective solution spaces. Lastly, the third part briefly introduces theoretical tools for GAs, the intersections and hybridizations with machine learning, and highlights selected promising applications.
Read More

Author: David A. Coley

Publisher: World Scientific

ISBN: 9789810236021

Category: Mathematics

Page: 227

View: 5636

This invaluable book has been designed to be useful to most practising scientists and engineers, whatever their field and however rusty their mathematics and programming might be. The approach taken is largely practical, with algorithms being presented in full and working code (in BASIC, FORTRAN, PASCAL AND C) included on a floppy disk to help the reader get up and running as quickly as possible. The text could also be used as part of an undergraduate course on search and optimisation. Student exercises are included at the end of several of the chapters, many of which are computer-based and designed to encourage exploration of the method.
Read More

Author: Prateek Joshi

Publisher: Packt Publishing Ltd

ISBN: 1786469677

Category: Computers

Page: 446

View: 4164

Build real-world Artificial Intelligence applications with Python to intelligently interact with the world around you About This Book Step into the amazing world of intelligent apps using this comprehensive guide Enter the world of Artificial Intelligence, explore it, and create your own applications Work through simple yet insightful examples that will get you up and running with Artificial Intelligence in no time Who This Book Is For This book is for Python developers who want to build real-world Artificial Intelligence applications. This book is friendly to Python beginners, but being familiar with Python would be useful to play around with the code. It will also be useful for experienced Python programmers who are looking to use Artificial Intelligence techniques in their existing technology stacks. What You Will Learn Realize different classification and regression techniques Understand the concept of clustering and how to use it to automatically segment data See how to build an intelligent recommender system Understand logic programming and how to use it Build automatic speech recognition systems Understand the basics of heuristic search and genetic programming Develop games using Artificial Intelligence Learn how reinforcement learning works Discover how to build intelligent applications centered on images, text, and time series data See how to use deep learning algorithms and build applications based on it In Detail Artificial Intelligence is becoming increasingly relevant in the modern world where everything is driven by technology and data. It is used extensively across many fields such as search engines, image recognition, robotics, finance, and so on. We will explore various real-world scenarios in this book and you'll learn about various algorithms that can be used to build Artificial Intelligence applications. During the course of this book, you will find out how to make informed decisions about what algorithms to use in a given context. Starting from the basics of Artificial Intelligence, you will learn how to develop various building blocks using different data mining techniques. You will see how to implement different algorithms to get the best possible results, and will understand how to apply them to real-world scenarios. If you want to add an intelligence layer to any application that's based on images, text, stock market, or some other form of data, this exciting book on Artificial Intelligence will definitely be your guide! Style and approach This highly practical book will show you how to implement Artificial Intelligence. The book provides multiple examples enabling you to create smart applications to meet the needs of your organization. In every chapter, we explain an algorithm, implement it, and then build a smart application.
Read More

Author: Zbigniew Michalewicz

Publisher: Springer Science & Business Media

ISBN: 3662033151

Category: Computers

Page: 387

View: 4430

Genetic algorithms are founded upon the principle of evolution, i.e., survival of the fittest. Hence evolution programming techniques, based on genetic algorithms, are applicable to many hard optimization problems, such as optimization of functions with linear and nonlinear constraints, the traveling salesman problem, and problems of scheduling, partitioning, and control. The importance of these techniques is still growing, since evolution programs are parallel in nature, and parallelism is one of the most promising directions in computer science. The book is self-contained and the only prerequisite is basic undergraduate mathematics. This third edition has been substantially revised and extended by three new chapters and by additional appendices containing working material to cover recent developments and a change in the perception of evolutionary computation.
Read More

Author: Dan Simon

Publisher: John Wiley & Sons

ISBN: 1118659503

Category: Mathematics

Page: 772

View: 735

A clear and lucid bottom-up approach to the basic principles of evolutionary algorithms Evolutionary algorithms (EAs) are a type of artificial intelligence. EAs are motivated by optimization processes that we observe in nature, such as natural selection, species migration, bird swarms, human culture, and ant colonies. This book discusses the theory, history, mathematics, and programming of evolutionary optimization algorithms. Featured algorithms include genetic algorithms, genetic programming, ant colony optimization, particle swarm optimization, differential evolution, biogeography-based optimization, and many others. Evolutionary Optimization Algorithms: Provides a straightforward, bottom-up approach that assists the reader in obtaining a clear—but theoretically rigorous—understanding of evolutionary algorithms, with an emphasis on implementation Gives a careful treatment of recently developed EAs—including opposition-based learning, artificial fish swarms, bacterial foraging, and many others— and discusses their similarities and differences from more well-established EAs Includes chapter-end problems plus a solutions manual available online for instructors Offers simple examples that provide the reader with an intuitive understanding of the theory Features source code for the examples available on the author's website Provides advanced mathematical techniques for analyzing EAs, including Markov modeling and dynamic system modeling Evolutionary Optimization Algorithms: Biologically Inspired and Population-Based Approaches to Computer Intelligence is an ideal text for advanced undergraduate students, graduate students, and professionals involved in engineering and computer science.
Read More

Author: S.N. Sivanandam,S. Sumathi,S. N. Deepa

Publisher: Springer Science & Business Media

ISBN: 3540357815

Category: Mathematics

Page: 430

View: 7380

This book provides a broad-ranging, but detailed overview of the basics of Fuzzy Logic. The fundamentals of Fuzzy Logic are discussed in detail, and illustrated with various solved examples. The book also deals with applications of Fuzzy Logic, to help readers more fully understand the concepts involved. Solutions to the problems are programmed using MATLAB 6.0, with simulated results. The MATLAB Fuzzy Logic toolbox is provided for easy reference.
Read More

Lessons from and for Competent Genetic Algorithms

Author: David E. Goldberg

Publisher: Springer Science & Business Media

ISBN: 1475736436

Category: Computers

Page: 248

View: 646

7 69 6 A DESIGN APPROACH TO PROBLEM DIFFICULTY 71 1 Design and Problem Difficulty 71 2 Three Misconceptions 72 3 Hard Problems Exist 76 4 The 3-Way Decomposition and Its Core 77 The Core of Intra-BB Difficulty: Deception 5 77 6 The Core of Inter-BB Difficulty: Scaling 83 7 The Core of Extra-BB Difficulty: Noise 88 Crosstalk: All Roads Lead to the Core 8 89 9 From Multimodality to Hierarchy 93 10 Summary 100 7 ENSURING BUILDING BLOCK SUPPLY 101 1 Past Work 101 2 Facetwise Supply Model I: One BB 102 Facetwise Supply Model II: Partition Success 103 3 4 Population Size for BB Supply 104 Summary 5 106 8 ENSURING BUILDING BLOCK GROWTH 109 1 The Schema Theorem: BB Growth Bound 109 2 Schema Growth Somewhat More Generally 111 3 Designing for BB Market Share Growth 112 4 Selection Press ure for Early Success 114 5 Designing for Late in the Day 116 The Schema Theorem Works 6 118 A Demonstration of Selection Stall 7 119 Summary 122 8 9 MAKING TIME FOR BUILDING BLOCKS 125 1 Analysis of Selection Alone: Takeover Time 126 2 Drift: When Selection Chooses for No Reason 129 3 Convergence Times with Multiple BBs 132 4 A Time-Scales Derivation of Critical Locus 142 5 A Little Model of Noise-Induced Run Elongation 143 6 From Alleles to Building Blocks 147 7 Summary 148 10 DECIDING WELL 151 1 Why is Decision Making a Problem? 151
Read More

Author: N.A

Publisher: Lulu.com

ISBN: 1409200736

Category: Computers

Page: 233

View: 6880

Genetic programming (GP) is a systematic, domain-independent method for getting computers to solve problems automatically starting from a high-level statement of what needs to be done. Using ideas from natural evolution, GP starts from an ooze of random computer programs, and progressively refines them through processes of mutation and sexual recombination, until high-fitness solutions emerge. All this without the user having to know or specify the form or structure of solutions in advance. GP has generated a plethora of human-competitive results and applications, including novel scientific discoveries and patentable inventions. This unique overview of this exciting technique is written by three of the most active scientists in GP. See www.gp-field-guide.org.uk for more information on the book.
Read More

Author: Mitsuo Gen,Runwei Cheng

Publisher: John Wiley & Sons

ISBN: 9780471127413

Category: Technology & Engineering

Page: 411

View: 3121

The last few years have seen important advances in the use of genetic algorithms to address challenging optimization problems in industrial engineering. Genetic Algorithms and Engineering Design is the only book to cover the most recent technologies and their application to manufacturing, presenting a comprehensive and fully up-to-date treatment of genetic algorithms in industrial engineering and operations research. Beginning with a tutorial on genetic algorithm fundamentals and their use in solving constrained and combinatorial optimization problems, the book applies these techniques to problems in specific areas—sequencing, scheduling and production plans, transportation and vehicle routing, facility layout, location-allocation, and more. Each topic features a clearly written problem description, mathematical model, and summary of conventional heuristic algorithms. All algorithms are explained in intuitive, rather than highly-technical, language and are reinforced with illustrative figures and numerical examples. Written by two internationally acknowledged experts in the field, Genetic Algorithms and Engineering Design features original material on the foundation and application of genetic algorithms, and also standardizes the terms and symbols used in other sources—making this complex subject truly accessible to the beginner as well as to the more advanced reader. Ideal for both self-study and classroom use, this self-contained reference provides indispensable state-of-the-art guidance to professionals and students working in industrial engineering, management science, operations research, computer science, and artificial intelligence.
Read More

Modern Concepts and Practical Applications

Author: Michael Affenzeller,Stefan Wagner,Stephan Winkler,Andreas Beham

Publisher: CRC Press

ISBN: 9781420011326

Category: Computers

Page: 379

View: 7175

Genetic Algorithms and Genetic Programming: Modern Concepts and Practical Applications discusses algorithmic developments in the context of genetic algorithms (GAs) and genetic programming (GP). It applies the algorithms to significant combinatorial optimization problems and describes structure identification using HeuristicLab as a platform for algorithm development. The book focuses on both theoretical and empirical aspects. The theoretical sections explore the important and characteristic properties of the basic GA as well as main characteristics of the selected algorithmic extensions developed by the authors. In the empirical parts of the text, the authors apply GAs to two combinatorial optimization problems: the traveling salesman and capacitated vehicle routing problems. To highlight the properties of the algorithmic measures in the field of GP, they analyze GP-based nonlinear structure identification applied to time series and classification problems. Written by core members of the HeuristicLab team, this book provides a better understanding of the basic workflow of GAs and GP, encouraging readers to establish new bionic, problem-independent theoretical concepts. By comparing the results of standard GA and GP implementation with several algorithmic extensions, it also shows how to substantially increase achievable solution quality.
Read More

Author: Valentino Zocca,Gianmario Spacagna,Daniel Slater,Peter Roelants

Publisher: Packt Publishing Ltd

ISBN: 1786460661

Category: Computers

Page: 406

View: 4853

Take your machine learning skills to the next level by mastering Deep Learning concepts and algorithms using Python. About This Book Explore and create intelligent systems using cutting-edge deep learning techniques Implement deep learning algorithms and work with revolutionary libraries in Python Get real-world examples and easy-to-follow tutorials on Theano, TensorFlow, H2O and more Who This Book Is For This book is for Data Science practitioners as well as aspirants who have a basic foundational understanding of Machine Learning concepts and some programming experience with Python. A mathematical background with a conceptual understanding of calculus and statistics is also desired. What You Will Learn Get a practical deep dive into deep learning algorithms Explore deep learning further with Theano, Caffe, Keras, and TensorFlow Learn about two of the most powerful techniques at the core of many practical deep learning implementations: Auto-Encoders and Restricted Boltzmann Machines Dive into Deep Belief Nets and Deep Neural Networks Discover more deep learning algorithms with Dropout and Convolutional Neural Networks Get to know device strategies so you can use deep learning algorithms and libraries in the real world In Detail With an increasing interest in AI around the world, deep learning has attracted a great deal of public attention. Every day, deep learning algorithms are used broadly across different industries. The book will give you all the practical information available on the subject, including the best practices, using real-world use cases. You will learn to recognize and extract information to increase predictive accuracy and optimize results. Starting with a quick recap of important machine learning concepts, the book will delve straight into deep learning principles using Sci-kit learn. Moving ahead, you will learn to use the latest open source libraries such as Theano, Keras, Google's TensorFlow, and H20. Use this guide to uncover the difficulties of pattern recognition, scaling data with greater accuracy and discussing deep learning algorithms and techniques. Whether you want to dive deeper into Deep Learning, or want to investigate how to get more out of this powerful technology, you'll find everything inside. Style and approach Python Machine Learning by example follows practical hands on approach. It walks you through the key elements of Python and its powerful machine learning libraries with the help of real world projects.
Read More

Author: John Hearty

Publisher: Packt Publishing Ltd

ISBN: 1784393835

Category: Computers

Page: 278

View: 1400

Solve challenging data science problems by mastering cutting-edge machine learning techniques in Python About This Book Resolve complex machine learning problems and explore deep learning Learn to use Python code for implementing a range of machine learning algorithms and techniques A practical tutorial that tackles real-world computing problems through a rigorous and effective approach Who This Book Is For This title is for Python developers and analysts or data scientists who are looking to add to their existing skills by accessing some of the most powerful recent trends in data science. If you've ever considered building your own image or text-tagging solution, or of entering a Kaggle contest for instance, this book is for you! Prior experience of Python and grounding in some of the core concepts of machine learning would be helpful. What You Will Learn Compete with top data scientists by gaining a practical and theoretical understanding of cutting-edge deep learning algorithms Apply your new found skills to solve real problems, through clearly-explained code for every technique and test Automate large sets of complex data and overcome time-consuming practical challenges Improve the accuracy of models and your existing input data using powerful feature engineering techniques Use multiple learning techniques together to improve the consistency of results Understand the hidden structure of datasets using a range of unsupervised techniques Gain insight into how the experts solve challenging data problems with an effective, iterative, and validation-focused approach Improve the effectiveness of your deep learning models further by using powerful ensembling techniques to strap multiple models together In Detail Designed to take you on a guided tour of the most relevant and powerful machine learning techniques in use today by top data scientists, this book is just what you need to push your Python algorithms to maximum potential. Clear examples and detailed code samples demonstrate deep learning techniques, semi-supervised learning, and more - all whilst working with real-world applications that include image, music, text, and financial data. The machine learning techniques covered in this book are at the forefront of commercial practice. They are applicable now for the first time in contexts such as image recognition, NLP and web search, computational creativity, and commercial/financial data modeling. Deep Learning algorithms and ensembles of models are in use by data scientists at top tech and digital companies, but the skills needed to apply them successfully, while in high demand, are still scarce. This book is designed to take the reader on a guided tour of the most relevant and powerful machine learning techniques. Clear descriptions of how techniques work and detailed code examples demonstrate deep learning techniques, semi-supervised learning and more, in real world applications. We will also learn about NumPy and Theano. By this end of this book, you will learn a set of advanced Machine Learning techniques and acquire a broad set of powerful skills in the area of feature selection & feature engineering. Style and approach This book focuses on clarifying the theory and code behind complex algorithms to make them practical, useable, and well-understood. Each topic is described with real-world applications, providing both broad contextual coverage and detailed guidance.
Read More

Author: Carlos Coello Coello,David A. Van Veldhuizen,Gary B. Lamont

Publisher: Springer Science & Business Media

ISBN: 1475751842

Category: Computers

Page: 576

View: 6442

Researchers and practitioners alike are increasingly turning to search, op timization, and machine-learning procedures based on natural selection and natural genetics to solve problems across the spectrum of human endeavor. These genetic algorithms and techniques of evolutionary computation are solv ing problems and inventing new hardware and software that rival human designs. The Kluwer Series on Genetic Algorithms and Evolutionary Computation pub lishes research monographs, edited collections, and graduate-level texts in this rapidly growing field. Primary areas of coverage include the theory, implemen tation, and application of genetic algorithms (GAs), evolution strategies (ESs), evolutionary programming (EP), learning classifier systems (LCSs) and other variants of genetic and evolutionary computation (GEC). The series also pub lishes texts in related fields such as artificial life, adaptive behavior, artificial immune systems, agent-based systems, neural computing, fuzzy systems, and quantum computing as long as GEC techniques are part of or inspiration for the system being described. This encyclopedic volume on the use of the algorithms of genetic and evolu tionary computation for the solution of multi-objective problems is a landmark addition to the literature that comes just in the nick of time. Multi-objective evolutionary algorithms (MOEAs) are receiving increasing and unprecedented attention. Researchers and practitioners are finding an irresistible match be tween the popUlation available in most genetic and evolutionary algorithms and the need in multi-objective problems to approximate the Pareto trade-off curve or surface.
Read More

Author: John J. Grefenstette

Publisher: Springer Science & Business Media

ISBN: 1461527406

Category: Computers

Page: 165

View: 3700

The articles presented here were selected from preliminary versions presented at the International Conference on Genetic Algorithms in June 1991, as well as at a special Workshop on Genetic Algorithms for Machine Learning at the same Conference. Genetic algorithms are general-purpose search algorithms that use principles inspired by natural population genetics to evolve solutions to problems. The basic idea is to maintain a population of knowledge structure that represent candidate solutions to the problem of interest. The population evolves over time through a process of competition (i.e. survival of the fittest) and controlled variation (i.e. recombination and mutation). Genetic Algorithms for Machine Learning contains articles on three topics that have not been the focus of many previous articles on GAs, namely concept learning from examples, reinforcement learning for control, and theoretical analysis of GAs. It is hoped that this sample will serve to broaden the acquaintance of the general machine learning community with the major areas of work on GAs. The articles in this book address a number of central issues in applying GAs to machine learning problems. For example, the choice of appropriate representation and the corresponding set of genetic learning operators is an important set of decisions facing a user of a genetic algorithm. The study of genetic algorithms is proceeding at a robust pace. If experimental progress and theoretical understanding continue to evolve as expected, genetic algorithms will continue to provide a distinctive approach to machine learning. Genetic Algorithms for Machine Learning is an edited volume of original research made up of invited contributions by leading researchers.
Read More

Theory and Applications

Author: Hitoshi Iba,Nasimul Noman

Publisher: World Scientific

ISBN: 9781848166813

Category: Computers

Page: 304

View: 3052

This book delivers theoretical and practical knowledge of Genetic Algorithms (GA) for the purpose of practical applications. It provides a methodology for a GA-based search strategy with the integration of several Artificial Life and Artificial Intelligence techniques, such as memetic concepts, swarm intelligence, and foraging strategies. The development of such tools contributes to better optimizing methodologies when addressing tasks from areas such as robotics, financial forecasting, and data mining in bioinformatics.The emphasis of this book is on applicability to the real world. Tasks from application areas – optimization of the trading rule in foreign exchange (FX) and stock prices, economic load dispatch in power system, exit/door placement for evacuation planning, and gene regulatory network inference in bioinformatics – are studied, and the resultant empirical investigations demonstrate how successful the proposed approaches are when solving real-world tasks of great importance.
Read More

Nature-inspired Programming Recipes

Author: Jason Brownlee

Publisher: Jason Brownlee

ISBN: 1446785068

Category: Computers

Page: 438

View: 3226

This book provides a handbook of algorithmic recipes from the fields of Metaheuristics, Biologically Inspired Computation and Computational Intelligence that have been described in a complete, consistent, and centralized manner. These standardized descriptions were carefully designed to be accessible, usable, and understandable. Most of the algorithms described in this book were originally inspired by biological and natural systems, such as the adaptive capabilities of genetic evolution and the acquired immune system, and the foraging behaviors of birds, bees, ants and bacteria. An encyclopedic algorithm reference, this book is intended for research scientists, engineers, students, and interested amateurs. Each algorithm description provides a working code example in the Ruby Programming Language.
Read More