Author: Tomasz Drabas,Denny Lee

Publisher: Packt Publishing Ltd

ISBN: 1786466252

Category: Computers

Page: 274

View: 5423

Build data-intensive applications locally and deploy at scale using the combined powers of Python and Spark 2.0 About This Book Learn why and how you can efficiently use Python to process data and build machine learning models in Apache Spark 2.0 Develop and deploy efficient, scalable real-time Spark solutions Take your understanding of using Spark with Python to the next level with this jump start guide Who This Book Is For If you are a Python developer who wants to learn about the Apache Spark 2.0 ecosystem, this book is for you. A firm understanding of Python is expected to get the best out of the book. Familiarity with Spark would be useful, but is not mandatory. What You Will Learn Learn about Apache Spark and the Spark 2.0 architecture Build and interact with Spark DataFrames using Spark SQL Learn how to solve graph and deep learning problems using GraphFrames and TensorFrames respectively Read, transform, and understand data and use it to train machine learning models Build machine learning models with MLlib and ML Learn how to submit your applications programmatically using spark-submit Deploy locally built applications to a cluster In Detail Apache Spark is an open source framework for efficient cluster computing with a strong interface for data parallelism and fault tolerance. This book will show you how to leverage the power of Python and put it to use in the Spark ecosystem. You will start by getting a firm understanding of the Spark 2.0 architecture and how to set up a Python environment for Spark. You will get familiar with the modules available in PySpark. You will learn how to abstract data with RDDs and DataFrames and understand the streaming capabilities of PySpark. Also, you will get a thorough overview of machine learning capabilities of PySpark using ML and MLlib, graph processing using GraphFrames, and polyglot persistence using Blaze. Finally, you will learn how to deploy your applications to the cloud using the spark-submit command. By the end of this book, you will have established a firm understanding of the Spark Python API and how it can be used to build data-intensive applications. Style and approach This book takes a very comprehensive, step-by-step approach so you understand how the Spark ecosystem can be used with Python to develop efficient, scalable solutions. Every chapter is standalone and written in a very easy-to-understand manner, with a focus on both the hows and the whys of each concept.
Read More

Author: Aurobindo Sarkar

Publisher: Packt Publishing Ltd

ISBN: 1785887351

Category: Computers

Page: 452

View: 1250

Design, implement, and deliver successful streaming applications, machine learning pipelines and graph applications using Spark SQL API About This Book Learn about the design and implementation of streaming applications, machine learning pipelines, deep learning, and large-scale graph processing applications using Spark SQL APIs and Scala. Learn data exploration, data munging, and how to process structured and semi-structured data using real-world datasets and gain hands-on exposure to the issues and challenges of working with noisy and "dirty" real-world data. Understand design considerations for scalability and performance in web-scale Spark application architectures. Who This Book Is For If you are a developer, engineer, or an architect and want to learn how to use Apache Spark in a web-scale project, then this is the book for you. It is assumed that you have prior knowledge of SQL querying. A basic programming knowledge with Scala, Java, R, or Python is all you need to get started with this book. What You Will Learn Familiarize yourself with Spark SQL programming, including working with DataFrame/Dataset API and SQL Perform a series of hands-on exercises with different types of data sources, including CSV, JSON, Avro, MySQL, and MongoDB Perform data quality checks, data visualization, and basic statistical analysis tasks Perform data munging tasks on publically available datasets Learn how to use Spark SQL and Apache Kafka to build streaming applications Learn key performance-tuning tips and tricks in Spark SQL applications Learn key architectural components and patterns in large-scale Spark SQL applications In Detail In the past year, Apache Spark has been increasingly adopted for the development of distributed applications. Spark SQL APIs provide an optimized interface that helps developers build such applications quickly and easily. However, designing web-scale production applications using Spark SQL APIs can be a complex task. Hence, understanding the design and implementation best practices before you start your project will help you avoid these problems. This book gives an insight into the engineering practices used to design and build real-world, Spark-based applications. The book's hands-on examples will give you the required confidence to work on any future projects you encounter in Spark SQL. It starts by familiarizing you with data exploration and data munging tasks using Spark SQL and Scala. Extensive code examples will help you understand the methods used to implement typical use-cases for various types of applications. You will get a walkthrough of the key concepts and terms that are common to streaming, machine learning, and graph applications. You will also learn key performance-tuning details including Cost Based Optimization (Spark 2.2) in Spark SQL applications. Finally, you will move on to learning how such systems are architected and deployed for a successful delivery of your project. Style and approach This book is a hands-on guide to designing, building, and deploying Spark SQL-centric production applications at scale.
Read More

Lightning-Fast Big Data Analysis

Author: Holden Karau,Andy Konwinski,Patrick Wendell,Matei Zaharia

Publisher: "O'Reilly Media, Inc."

ISBN: 144935906X

Category: COMPUTERS

Page: 276

View: 7336

Data in all domains is getting bigger. How can you work with it efficiently? Recently updated for Spark 1.3, this book introduces Apache Spark, the open source cluster computing system that makes data analytics fast to write and fast to run. With Spark, you can tackle big datasets quickly through simple APIs in Python, Java, and Scala. This edition includes new information on Spark SQL, Spark Streaming, setup, and Maven coordinates. Written by the developers of Spark, this book will have data scientists and engineers up and running in no time. You’ll learn how to express parallel jobs with just a few lines of code, and cover applications from simple batch jobs to stream processing and machine learning. Quickly dive into Spark capabilities such as distributed datasets, in-memory caching, and the interactive shell Leverage Spark’s powerful built-in libraries, including Spark SQL, Spark Streaming, and MLlib Use one programming paradigm instead of mixing and matching tools like Hive, Hadoop, Mahout, and Storm Learn how to deploy interactive, batch, and streaming applications Connect to data sources including HDFS, Hive, JSON, and S3 Master advanced topics like data partitioning and shared variables
Read More

A Problem-Solution Approach with PySpark2

Author: Raju Kumar Mishra

Publisher: Apress

ISBN: 1484231414

Category: Computers

Page: 265

View: 9668

Quickly find solutions to common programming problems encountered while processing big data. Content is presented in the popular problem-solution format. Look up the programming problem that you want to solve. Read the solution. Apply the solution directly in your own code. Problem solved! PySpark Recipes covers Hadoop and its shortcomings. The architecture of Spark, PySpark, and RDD are presented. You will learn to apply RDD to solve day-to-day big data problems. Python and NumPy are included and make it easy for new learners of PySpark to understand and adopt the model. What You Will Learn Understand the advanced features of PySpark2 and SparkSQL Optimize your code Program SparkSQL with Python Use Spark Streaming and Spark MLlib with Python Perform graph analysis with GraphFrames Who This Book Is For Data analysts, Python programmers, big data enthusiasts
Read More

Over 60 recipes for implementing big data processing and analytics using Apache Spark and Python

Author: Tomasz Drabas,Denny Lee

Publisher: Packt Publishing Ltd

ISBN: 1788834259

Category: Computers

Page: 330

View: 9967

Combine the power of Apache Spark and Python to build effective big data applications Key Features Perform effective data processing, machine learning, and analytics using PySpark Overcome challenges in developing and deploying Spark solutions using Python Explore recipes for efficiently combining Python and Apache Spark to process data Book Description Apache Spark is an open source framework for efficient cluster computing with a strong interface for data parallelism and fault tolerance. The PySpark Cookbook presents effective and time-saving recipes for leveraging the power of Python and putting it to use in the Spark ecosystem. You’ll start by learning the Apache Spark architecture and how to set up a Python environment for Spark. You’ll then get familiar with the modules available in PySpark and start using them effortlessly. In addition to this, you’ll discover how to abstract data with RDDs and DataFrames, and understand the streaming capabilities of PySpark. You’ll then move on to using ML and MLlib in order to solve any problems related to the machine learning capabilities of PySpark and use GraphFrames to solve graph-processing problems. Finally, you will explore how to deploy your applications to the cloud using the spark-submit command. By the end of this book, you will be able to use the Python API for Apache Spark to solve any problems associated with building data-intensive applications. What you will learn Configure a local instance of PySpark in a virtual environment Install and configure Jupyter in local and multi-node environments Create DataFrames from JSON and a dictionary using pyspark.sql Explore regression and clustering models available in the ML module Use DataFrames to transform data used for modeling Connect to PubNub and perform aggregations on streams Who this book is for The PySpark Cookbook is for you if you are a Python developer looking for hands-on recipes for using the Apache Spark 2.x ecosystem in the best possible way. A thorough understanding of Python (and some familiarity with Spark) will help you get the best out of the book.
Read More

Author: Nick Pentreath

Publisher: Packt Publishing Ltd

ISBN: 1783288523

Category: Computers

Page: 338

View: 4656

If you are a Scala, Java, or Python developer with an interest in machine learning and data analysis and are eager to learn how to apply common machine learning techniques at scale using the Spark framework, this is the book for you. While it may be useful to have a basic understanding of Spark, no previous experience is required.
Read More

Author: Dan Pilone

Publisher: O'Reilly Germany

ISBN: 9783897212633

Category:

Page: 90

View: 5536

Read More

With Natural Language Processing and Recommender Systems

Author: Pramod Singh

Publisher: Apress

ISBN: 9781484241301

Category: Computers

Page: 245

View: 4030

Build machine learning models, natural language processing applications, and recommender systems with PySpark to solve various business challenges. This book starts with the fundamentals of Spark and its evolution and then covers the entire spectrum of traditional machine learning algorithms along with natural language processing and recommender systems using PySpark. Machine Learning with PySpark shows you how to build supervised machine learning models such as linear regression, logistic regression, decision trees, and random forest. You’ll also see unsupervised machine learning models such as K-means and hierarchical clustering. A major portion of the book focuses on feature engineering to create useful features with PySpark to train the machine learning models. The natural language processing section covers text processing, text mining, and embedding for classification. After reading this book, you will understand how to use PySpark’s machine learning library to build and train various machine learning models. Additionally you’ll become comfortable with related PySpark components, such as data ingestion, data processing, and data analysis, that you can use to develop data-driven intelligent applications. What You Will Learn Build a spectrum of supervised and unsupervised machine learning algorithms Implement machine learning algorithms with Spark MLlib libraries Develop a recommender system with Spark MLlib libraries Handle issues related to feature engineering, class balance, bias and variance, and cross validation for building an optimal fit model Who This Book Is For Data science and machine learning professionals.
Read More

Das Praxis-Handbuch für Data Science, Predictive Analytics und Deep Learning

Author: Sebastian Raschka

Publisher: MITP-Verlags GmbH & Co. KG

ISBN: 3958454240

Category: Computers

Page: 424

View: 2929

Read More

Auswertung von Daten mit Pandas, NumPy und IPython

Author: Wes McKinney

Publisher: O'Reilly

ISBN: 3960102143

Category: Computers

Page: 542

View: 7591

Erfahren Sie alles über das Manipulieren, Bereinigen, Verarbeiten und Aufbereiten von Datensätzen mit Python: Aktualisiert auf Python 3.6, zeigt Ihnen dieses konsequent praxisbezogene Buch anhand konkreter Fallbeispiele, wie Sie eine Vielzahl von typischen Datenanalyse-Problemen effektiv lösen. Gleichzeitig lernen Sie die neuesten Versionen von pandas, NumPy, IPython und Jupyter kennen.Geschrieben von Wes McKinney, dem Begründer des pandas-Projekts, bietet Datenanalyse mit Python einen praktischen Einstieg in die Data-Science-Tools von Python. Das Buch eignet sich sowohl für Datenanalysten, für die Python Neuland ist, als auch für Python-Programmierer, die sich in Data Science und Scientific Computing einarbeiten wollen. Daten und zugehöriges Material des Buchs sind auf GitHub verfügbar.Aus dem Inhalt:Nutzen Sie die IPython-Shell und Jupyter Notebook für das explorative ComputingLernen Sie Grundfunktionen und fortgeschrittene Features von NumPy kennenSetzen Sie die Datenanalyse-Tools der pandasBibliothek einVerwenden Sie flexible Werkzeuge zum Laden, Bereinigen, Transformieren, Zusammenführen und Umformen von DatenErstellen Sie interformative Visualisierungen mit matplotlibWenden Sie die GroupBy-Mechanismen von pandas an, um Datensätzen zurechtzuschneiden, umzugestalten und zusammenzufassenAnalysieren und manipulieren Sie verschiedenste Zeitreihen-DatenFür diese aktualisierte 2. Auflage wurde der gesamte Code an Python 3.6 und die neuesten Versionen der pandas-Bibliothek angepasst. Neu in dieser Auflage: Informationen zu fortgeschrittenen pandas-Tools sowie eine kurze Einführung in statsmodels und scikit-learn.
Read More

Explore the concepts of functional programming, data streaming, and machine learning

Author: Md. Rezaul Karim,Sridhar Alla

Publisher: Packt Publishing Ltd

ISBN: 1783550503

Category: Computers

Page: 786

View: 1152

Harness the power of Scala to program Spark and analyze tonnes of data in the blink of an eye! About This Book Learn Scala's sophisticated type system that combines Functional Programming and object-oriented concepts Work on a wide array of applications, from simple batch jobs to stream processing and machine learning Explore the most common as well as some complex use-cases to perform large-scale data analysis with Spark Who This Book Is For Anyone who wishes to learn how to perform data analysis by harnessing the power of Spark will find this book extremely useful. No knowledge of Spark or Scala is assumed, although prior programming experience (especially with other JVM languages) will be useful to pick up concepts quicker. What You Will Learn Understand object-oriented & functional programming concepts of Scala In-depth understanding of Scala collection APIs Work with RDD and DataFrame to learn Spark's core abstractions Analysing structured and unstructured data using SparkSQL and GraphX Scalable and fault-tolerant streaming application development using Spark structured streaming Learn machine-learning best practices for classification, regression, dimensionality reduction, and recommendation system to build predictive models with widely used algorithms in Spark MLlib & ML Build clustering models to cluster a vast amount of data Understand tuning, debugging, and monitoring Spark applications Deploy Spark applications on real clusters in Standalone, Mesos, and YARN In Detail Scala has been observing wide adoption over the past few years, especially in the field of data science and analytics. Spark, built on Scala, has gained a lot of recognition and is being used widely in productions. Thus, if you want to leverage the power of Scala and Spark to make sense of big data, this book is for you. The first part introduces you to Scala, helping you understand the object-oriented and functional programming concepts needed for Spark application development. It then moves on to Spark to cover the basic abstractions using RDD and DataFrame. This will help you develop scalable and fault-tolerant streaming applications by analyzing structured and unstructured data using SparkSQL, GraphX, and Spark structured streaming. Finally, the book moves on to some advanced topics, such as monitoring, configuration, debugging, testing, and deployment. You will also learn how to develop Spark applications using SparkR and PySpark APIs, interactive data analytics using Zeppelin, and in-memory data processing with Alluxio. By the end of this book, you will have a thorough understanding of Spark, and you will be able to perform full-stack data analytics with a feel that no amount of data is too big. Style and approach Filled with practical examples and use cases, this book will hot only help you get up and running with Spark, but will also take you farther down the road to becoming a data scientist.
Read More

Author: Muhammad Asif Abbasi

Publisher: Packt Publishing Ltd

ISBN: 1785889583

Category: Computers

Page: 356

View: 8267

Learn about the fastest-growing open source project in the world, and find out how it revolutionizes big data analytics About This Book Exclusive guide that covers how to get up and running with fast data processing using Apache Spark Explore and exploit various possibilities with Apache Spark using real-world use cases in this book Want to perform efficient data processing at real time? This book will be your one-stop solution. Who This Book Is For This guide appeals to big data engineers, analysts, architects, software engineers, even technical managers who need to perform efficient data processing on Hadoop at real time. Basic familiarity with Java or Scala will be helpful. The assumption is that readers will be from a mixed background, but would be typically people with background in engineering/data science with no prior Spark experience and want to understand how Spark can help them on their analytics journey. What You Will Learn Get an overview of big data analytics and its importance for organizations and data professionals Delve into Spark to see how it is different from existing processing platforms Understand the intricacies of various file formats, and how to process them with Apache Spark. Realize how to deploy Spark with YARN, MESOS or a Stand-alone cluster manager. Learn the concepts of Spark SQL, SchemaRDD, Caching and working with Hive and Parquet file formats Understand the architecture of Spark MLLib while discussing some of the off-the-shelf algorithms that come with Spark. Introduce yourself to the deployment and usage of SparkR. Walk through the importance of Graph computation and the graph processing systems available in the market Check the real world example of Spark by building a recommendation engine with Spark using ALS. Use a Telco data set, to predict customer churn using Random Forests. In Detail Spark juggernaut keeps on rolling and getting more and more momentum each day. Spark provides key capabilities in the form of Spark SQL, Spark Streaming, Spark ML and Graph X all accessible via Java, Scala, Python and R. Deploying the key capabilities is crucial whether it is on a Standalone framework or as a part of existing Hadoop installation and configuring with Yarn and Mesos. The next part of the journey after installation is using key components, APIs, Clustering, machine learning APIs, data pipelines, parallel programming. It is important to understand why each framework component is key, how widely it is being used, its stability and pertinent use cases. Once we understand the individual components, we will take a couple of real life advanced analytics examples such as 'Building a Recommendation system', 'Predicting customer churn' and so on. The objective of these real life examples is to give the reader confidence of using Spark for real-world problems. Style and approach With the help of practical examples and real-world use cases, this guide will take you from scratch to building efficient data applications using Apache Spark. You will learn all about this excellent data processing engine in a step-by-step manner, taking one aspect of it at a time. This highly practical guide will include how to work with data pipelines, dataframes, clustering, SparkSQL, parallel programming, and such insightful topics with the help of real-world use cases.
Read More

Patterns for Learning from Data at Scale

Author: Sandy Ryza

Publisher: "O'Reilly Media, Inc."

ISBN: 1491972920

Category:

Page: N.A

View: 8193

In the second edition of this practical book, four Cloudera data scientists present a set of self-contained patterns for performing large-scale data analysis with Spark. The authors bring Spark, statistical methods, and real-world data sets together to teach you how to approach analytics problems by example. Updated for Spark 2.1, this edition acts as an introduction to these techniques and other best practices in Spark programming. You'll start with an introduction to Spark and its ecosystem, and then dive into patterns that apply common techniques--including classification, clustering, collaborative filtering, and anomaly detection--to fields such as genomics, security, and finance. If you have an entry-level understanding of machine learning and statistics, and you program in Java, Python, or Scala, you'll find the book's patterns useful for working on your own data applications. With this book, you will: Familiarize yourself with the Spark programming model Become comfortable within the Spark ecosystem Learn general approaches in data science Examine complete implementations that analyze large public data sets Discover which machine learning tools make sense for particular problems Acquire code that can be adapted to many uses
Read More

Author: Dean Wampler,Alex Payne

Publisher: O'Reilly Germany

ISBN: 3897216485

Category: Computers

Page: 480

View: 7866

Sie ist elegant, schlank, modern und flexibel: Die Rede ist von Scala, der neuen Programmiersprache für die Java Virtual Machine (JVM). Sie vereint die Vorzüge funktionaler und objektorientierter Programmierung, ist typsicherer als Java, lässt sich nahtlos in die Java-Welt integrieren – und eine in Scala entwickelte Anwendung benötigt oft nur einen Bruchteil der Codezeilen ihres Java-Pendants. Kein Wunder, dass immer mehr Firmen, deren große, geschäftskritische Anwendungen auf Java basieren, auf Scala umsteigen, um ihre Produktivität und die Skalierbarkeit ihrer Software zu erhöhen. Das wollen Sie auch? Dann lassen Sie sich von den Scala-Profis Dean Wampler und Alex Payne zeigen, wie es geht. Ihre Werkzeugkiste: Schon bevor Sie loslegen, sind Sie weiter, als Sie denken: Sie können Ihre Java-Programme weiter verwenden, Java-Bibliotheken nutzen, Java von Scala aus aufrufen und Scala von Java aus. Auch Ihre bevorzugten Entwicklungswerkzeuge wie NetBeans, IntelliJ IDEA oder Eclipse stehen Ihnen weiter zur Verfügung, dazu Kommandozeilen-Tools, Plugins für Editoren, Werkzeuge von Drittanbietern – und natürlich Ihre Programmiererfahrung. In Programmieren mit Scala erfahren Sie, wie Sie sich all das zunutze machen. Das Hybridmodell: Die Paradigmen "funktional" und "objektorientiert" sind keine Gegensätze, sondern ergänzen sich unter dem Scala-Dach zu einem sehr produktiven Ganzen. Nutzen Sie die Vorteile funktionaler Programmierung, wann immer sich das anbietet – und seien Sie so frei, auf die guten alten Seiteneffekte zu bauen, wenn Sie das für nötig halten. Futter für die Profis: Skalierbare Nebenläufigkeit mit Aktoren, Aufzucht und Pflege von XML mit Scala, Domainspezifische Sprachen, Tipps zum richtigen Anwendungsdesign – das sind nur ein paar der fortgeschrittenen Themen, in die Sie mit den beiden Autoren eintauchen. Danach sind Sie auch Profi im Programmieren mit Scala.
Read More

Over 80 recipes that streamline deep learning in a distributed environment with Apache Spark

Author: Ahmed Sherif,Amrith Ravindra

Publisher: Packt Publishing Ltd

ISBN: 1788471555

Category: Computers

Page: 474

View: 768

A solution-based guide to put your deep learning models into production with the power of Apache Spark Key Features Discover practical recipes for distributed deep learning with Apache Spark Learn to use libraries such as Keras and TensorFlow Solve problems in order to train your deep learning models on Apache Spark Book Description With deep learning gaining rapid mainstream adoption in modern-day industries, organizations are looking for ways to unite popular big data tools with highly efficient deep learning libraries. As a result, this will help deep learning models train with higher efficiency and speed. With the help of the Apache Spark Deep Learning Cookbook, you’ll work through specific recipes to generate outcomes for deep learning algorithms, without getting bogged down in theory. From setting up Apache Spark for deep learning to implementing types of neural net, this book tackles both common and not so common problems to perform deep learning on a distributed environment. In addition to this, you’ll get access to deep learning code within Spark that can be reused to answer similar problems or tweaked to answer slightly different problems. You will also learn how to stream and cluster your data with Spark. Once you have got to grips with the basics, you’ll explore how to implement and deploy deep learning models, such as Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN) in Spark, using popular libraries such as TensorFlow and Keras. By the end of the book, you'll have the expertise to train and deploy efficient deep learning models on Apache Spark. What you will learn Set up a fully functional Spark environment Understand practical machine learning and deep learning concepts Apply built-in machine learning libraries within Spark Explore libraries that are compatible with TensorFlow and Keras Explore NLP models such as Word2vec and TF-IDF on Spark Organize dataframes for deep learning evaluation Apply testing and training modeling to ensure accuracy Access readily available code that may be reusable Who this book is for If you’re looking for a practical and highly useful resource for implementing efficiently distributed deep learning models with Apache Spark, then the Apache Spark Deep Learning Cookbook is for you. Knowledge of the core machine learning concepts and a basic understanding of the Apache Spark framework is required to get the best out of this book. Additionally, some programming knowledge in Python is a plus.
Read More

Author: Amit Nandi

Publisher: Packt Publishing Ltd

ISBN: 1784397377

Category: Computers

Page: 206

View: 9736

A concise guide to implementing Spark Big Data analytics for Python developers, and building a real-time and insightful trend tracker data intensive app About This Book Set up real-time streaming and batch data intensive infrastructure using Spark and Python Deliver insightful visualizations in a web app using Spark (PySpark) Inject live data using Spark Streaming with real-time events Who This Book Is For This book is for data scientists and software developers with a focus on Python who want to work with the Spark engine, and it will also benefit Enterprise Architects. All you need to have is a good background of Python and an inclination to work with Spark. What You Will Learn Create a Python development environment powered by Spark (PySpark), Blaze, and Bookeh Build a real-time trend tracker data intensive app Visualize the trends and insights gained from data using Bookeh Generate insights from data using machine learning through Spark MLLIB Juggle with data using Blaze Create training data sets and train the Machine Learning models Test the machine learning models on test datasets Deploy the machine learning algorithms and models and scale it for real-time events In Detail Looking for a cluster computing system that provides high-level APIs? Apache Spark is your answer—an open source, fast, and general purpose cluster computing system. Spark's multi-stage memory primitives provide performance up to 100 times faster than Hadoop, and it is also well-suited for machine learning algorithms. Are you a Python developer inclined to work with Spark engine? If so, this book will be your companion as you create data-intensive app using Spark as a processing engine, Python visualization libraries, and web frameworks such as Flask. To begin with, you will learn the most effective way to install the Python development environment powered by Spark, Blaze, and Bookeh. You will then find out how to connect with data stores such as MySQL, MongoDB, Cassandra, and Hadoop. You'll expand your skills throughout, getting familiarized with the various data sources (Github, Twitter, Meetup, and Blogs), their data structures, and solutions to effectively tackle complexities. You'll explore datasets using iPython Notebook and will discover how to optimize the data models and pipeline. Finally, you'll get to know how to create training datasets and train the machine learning models. By the end of the book, you will have created a real-time and insightful trend tracker data-intensive app with Spark. Style and approach This is a comprehensive guide packed with easy-to-follow examples that will take your skills to the next level and will get you up and running with Spark.
Read More

Big Data Processing Made Simple

Author: Bill Chambers,Matei Zaharia

Publisher: "O'Reilly Media, Inc."

ISBN: 1491912308

Category: COMPUTERS

Page: 608

View: 7932

Learn how to use, deploy, and maintain Apache Spark with this comprehensive guide, written by the creators of the open-source cluster-computing framework. With an emphasis on improvements and new features in Spark 2.0, authors Bill Chambers and Matei Zaharia break down Spark topics into distinct sections, each with unique goals. You’ll explore the basic operations and common functions of Spark’s structured APIs, as well as Structured Streaming, a new high-level API for building end-to-end streaming applications. Developers and system administrators will learn the fundamentals of monitoring, tuning, and debugging Spark, and explore machine learning techniques and scenarios for employing MLlib, Spark’s scalable machine-learning library. Get a gentle overview of big data and Spark Learn about DataFrames, SQL, and Datasets—Spark’s core APIs—through worked examples Dive into Spark’s low-level APIs, RDDs, and execution of SQL and DataFrames Understand how Spark runs on a cluster Debug, monitor, and tune Spark clusters and applications Learn the power of Structured Streaming, Spark’s stream-processing engine Learn how you can apply MLlib to a variety of problems, including classification or recommendation
Read More

Author: Padma Priya Chitturi

Publisher: Packt Publishing Ltd

ISBN: 1785288806

Category: Computers

Page: 392

View: 9859

Over insightful 90 recipes to get lightning-fast analytics with Apache Spark About This Book Use Apache Spark for data processing with these hands-on recipes Implement end-to-end, large-scale data analysis better than ever before Work with powerful libraries such as MLLib, SciPy, NumPy, and Pandas to gain insights from your data Who This Book Is For This book is for novice and intermediate level data science professionals and data analysts who want to solve data science problems with a distributed computing framework. Basic experience with data science implementation tasks is expected. Data science professionals looking to skill up and gain an edge in the field will find this book helpful. What You Will Learn Explore the topics of data mining, text mining, Natural Language Processing, information retrieval, and machine learning. Solve real-world analytical problems with large data sets. Address data science challenges with analytical tools on a distributed system like Spark (apt for iterative algorithms), which offers in-memory processing and more flexibility for data analysis at scale. Get hands-on experience with algorithms like Classification, regression, and recommendation on real datasets using Spark MLLib package. Learn about numerical and scientific computing using NumPy and SciPy on Spark. Use Predictive Model Markup Language (PMML) in Spark for statistical data mining models. In Detail Spark has emerged as the most promising big data analytics engine for data science professionals. The true power and value of Apache Spark lies in its ability to execute data science tasks with speed and accuracy. Spark's selling point is that it combines ETL, batch analytics, real-time stream analysis, machine learning, graph processing, and visualizations. It lets you tackle the complexities that come with raw unstructured data sets with ease. This guide will get you comfortable and confident performing data science tasks with Spark. You will learn about implementations including distributed deep learning, numerical computing, and scalable machine learning. You will be shown effective solutions to problematic concepts in data science using Spark's data science libraries such as MLLib, Pandas, NumPy, SciPy, and more. These simple and efficient recipes will show you how to implement algorithms and optimize your work. Style and approach This book contains a comprehensive range of recipes designed to help you learn the fundamentals and tackle the difficulties of data science. This book outlines practical steps to produce powerful insights into Big Data through a recipe-based approach.
Read More

Author: Srinivas Duvvuri,Bikramaditya Singhal

Publisher: Packt Publishing Ltd

ISBN: 1785884778

Category: Computers

Page: 344

View: 9231

Analyze your data and delve deep into the world of machine learning with the latest Spark version, 2.0 About This Book Perform data analysis and build predictive models on huge datasets that leverage Apache Spark Learn to integrate data science algorithms and techniques with the fast and scalable computing features of Spark to address big data challenges Work through practical examples on real-world problems with sample code snippets Who This Book Is For This book is for anyone who wants to leverage Apache Spark for data science and machine learning. If you are a technologist who wants to expand your knowledge to perform data science operations in Spark, or a data scientist who wants to understand how algorithms are implemented in Spark, or a newbie with minimal development experience who wants to learn about Big Data Analytics, this book is for you! What You Will Learn Consolidate, clean, and transform your data acquired from various data sources Perform statistical analysis of data to find hidden insights Explore graphical techniques to see what your data looks like Use machine learning techniques to build predictive models Build scalable data products and solutions Start programming using the RDD, DataFrame and Dataset APIs Become an expert by improving your data analytical skills In Detail This is the era of Big Data. The words ҂ig Data' implies big innovation and enables a competitive advantage for businesses. Apache Spark was designed to perform Big Data analytics at scale, and so Spark is equipped with the necessary algorithms and supports multiple programming languages. Whether you are a technologist, a data scientist, or a beginner to Big Data analytics, this book will provide you with all the skills necessary to perform statistical data analysis, data visualization, predictive modeling, and build scalable data products or solutions using Python, Scala, and R. With ample case studies and real-world examples, Spark for Data Science will help you ensure the successful execution of your data science projects. Style and approach This book takes a step-by-step approach to statistical analysis and machine learning, and is explained in a conversational and easy-to-follow style. Each topic is explained sequentially with a focus on the fundamentals as well as the advanced concepts of algorithms and techniques. Real-world examples with sample code snippets are also included.
Read More