Author: G. O. Jones,A. J. Wilkie

Publisher: Cambridge University Press

ISBN: 1316301060

Category: Mathematics

Page: N.A

View: 9729

This collection of articles, originating from a short course held at the University of Manchester, explores the ideas behind Pila's proof of the Andre–Oort conjecture for products of modular curves. The basic strategy has three main ingredients: the Pila–Wilkie theorem, bounds on Galois orbits, and functional transcendence results. All of these topics are covered in this volume, making it ideal for researchers wishing to keep up to date with the latest developments in the field. Original papers are combined with background articles in both the number theoretic and model theoretic aspects of the subject. These include Martin Orr's survey of abelian varieties, Christopher Daw's introduction to Shimura varieties, and Jacob Tsimerman's proof via o-minimality of Ax's theorem on the functional case of Schanuel's conjecture.
Read More

In Honor of Kang-Tae Kim’s 60th Birthday, Gyeongju, Korea, 2017

Author: Jisoo Byun,Hong Rae Cho,Sung Yeon Kim,Kang-Hyurk Lee,Jong-Do Park

Publisher: Springer

ISBN: 9811316724

Category: Mathematics

Page: 361

View: 8836

The KSCV Symposium, the Korean Conference on Several Complex Variables, started in 1997 in an effort to promote the study of complex analysis and geometry. Since then, the conference met semi-regularly for about 10 years and then settled on being held biannually. The sixth and tenth conferences were held in 2002 and 2014 as satellite conferences to the Beijing International Congress of Mathematicians (ICM) and the Seoul ICM, respectively. The purpose of the KSCV Symposium is to organize the research talks of many leading scholars in the world, to provide an opportunity for communication, and to promote new researchers in this field.
Read More

Salt Lake City 2015 : 2015 Summer Research Institute, July 13-31, 2015, University of Utah, Salt Lake City, Utah

Author: Richard Thomas

Publisher: American Mathematical Soc.

ISBN: 1470435780

Category: Geometry, Algebraic

Page: 635

View: 8395

This is Part 2 of a two-volume set. Since Oscar Zariski organized a meeting in 1954, there has been a major algebraic geometry meeting every decade: Woods Hole (1964), Arcata (1974), Bowdoin (1985), Santa Cruz (1995), and Seattle (2005). The American Mathematical Society has supported these summer institutes for over 50 years. Their proceedings volumes have been extremely influential, summarizing the state of algebraic geometry at the time and pointing to future developments. The most recent Summer Institute in Algebraic Geometry was held July 2015 at the University of Utah in Salt Lake City, sponsored by the AMS with the collaboration of the Clay Mathematics Institute. This volume includes surveys growing out of plenary lectures and seminar talks during the meeting. Some present a broad overview of their topics, while others develop a distinctive perspective on an emerging topic. Topics span both complex algebraic geometry and arithmetic questions, specifically, analytic techniques, enumerative geometry, moduli theory, derived categories, birational geometry, tropical geometry, Diophantine questions, geometric representation theory, characteristic and -adic tools, etc. The resulting articles will be important references in these areas for years to come.
Read More

Author: Pierre Simon

Publisher: Cambridge University Press

ISBN: 1107057752

Category: Mathematics

Page: 166

View: 3925

The first book to introduce the rapidly developing subject of NIP theories, for students and researchers in model theory.
Read More

Author: Thierry Daudé,Dietrich Häfner,Jean-Philippe Nicolas

Publisher: Cambridge University Press

ISBN: 1108500781

Category: Science

Page: N.A

View: 1792

This volume compiles notes from four mini courses given at the summer school on asymptotic analysis in general relativity, held at the Institut Fourier in Grenoble, France. It contains an up-to-date panorama of modern techniques in the asymptotic analysis of classical and quantum fields in general relativity. Accessible to graduate students, these notes gather results that were not previously available in textbooks or monographs and will be of wider interest to researchers in general relativity. The topics of these mini courses are: the geometry of black hole spacetimes; an introduction to quantum field theory on curved spacetimes; conformal geometry and tractor calculus; and microlocal analysis for wave propagation.
Read More

Author: Christopher D. Hacon,Mircea Mustaţă,Mihnea Popa

Publisher: Cambridge University Press

ISBN: 110764755X

Category: Mathematics

Page: 447

View: 2557

A comprehensive collection of expository articles on cutting-edge topics at the forefront of research in algebraic geometry.
Read More

Author: Marta Bunge,Felipe Gago,Ana María San Luis

Publisher: Cambridge University Press

ISBN: 1108692206

Category: Mathematics

Page: N.A

View: 844

This book formally introduces synthetic differential topology, a natural extension of the theory of synthetic differential geometry which captures classical concepts of differential geometry and topology by means of the rich categorical structure of a necessarily non-Boolean topos and of the systematic use of logical infinitesimal objects in it. Beginning with an introduction to those parts of topos theory and synthetic differential geometry necessary for the remainder, this clear and comprehensive text covers the general theory of synthetic differential topology and several applications of it to classical mathematics, including the calculus of variations, Mather's theorem, and Morse theory on the classification of singularities. The book represents the state of the art in synthetic differential topology and will be of interest to researchers in topos theory and to mathematicians interested in the categorical foundations of differential geometry and topology.
Read More

Author: Ehud Hrushovski,François Loeser

Publisher: Princeton University Press

ISBN: 1400881226

Category: Mathematics

Page: 232

View: 3965

Over the field of real numbers, analytic geometry has long been in deep interaction with algebraic geometry, bringing the latter subject many of its topological insights. In recent decades, model theory has joined this work through the theory of o-minimality, providing finiteness and uniformity statements and new structural tools. For non-archimedean fields, such as the p-adics, the Berkovich analytification provides a connected topology with many thoroughgoing analogies to the real topology on the set of complex points, and it has become an important tool in algebraic dynamics and many other areas of geometry. This book lays down model-theoretic foundations for non-archimedean geometry. The methods combine o-minimality and stability theory. Definable types play a central role, serving first to define the notion of a point and then properties such as definable compactness. Beyond the foundations, the main theorem constructs a deformation retraction from the full non-archimedean space of an algebraic variety to a rational polytope. This generalizes previous results of V. Berkovich, who used resolution of singularities methods. No previous knowledge of non-archimedean geometry is assumed. Model-theoretic prerequisites are reviewed in the first sections.
Read More

Author: Gregory L. Cherlin,Ehud Hrushovski

Publisher: Princeton University Press

ISBN: 9780691113319

Category: Mathematics

Page: 193

View: 6218

This book applies model theoretic methods to the study of certain finite permutation groups, the automorphism groups of structures for a fixed finite language with a bounded number of orbits on 4-tuples. Primitive permutation groups of this type have been classified by Kantor, Liebeck, and Macpherson, using the classification of the finite simple groups. Building on this work, Gregory Cherlin and Ehud Hrushovski here treat the general case by developing analogs of the model theoretic methods of geometric stability theory. The work lies at the juncture of permutation group theory, model theory, classical geometries, and combinatorics. The principal results are finite theorems, an associated analysis of computational issues, and an "intrinsic" characterization of the permutation groups (or finite structures) under consideration. The main finiteness theorem shows that the structures under consideration fall naturally into finitely many families, with each family parametrized by finitely many numerical invariants (dimensions of associated coordinating geometries). The authors provide a case study in the extension of methods of stable model theory to a nonstable context, related to work on Shelah's "simple theories." They also generalize Lachlan's results on stable homogeneous structures for finite relational languages, solving problems of effectivity left open by that case. Their methods involve the analysis of groups interpretable in these structures, an analog of Zilber's envelopes, and the combinatorics of the underlying geometries. Taking geometric stability theory into new territory, this book is for mathematicians interested in model theory and group theory.
Read More

Author: Luis Dieulefait,Gerd Faltings,D. R. Heath-Brown,Yuri I. Manin,B. Z. Moroz,Yu. V. Manin,Jean-Pierre Wintenberger

Publisher: Cambridge University Press

ISBN: 1107462541

Category: Mathematics

Page: 550

View: 3048

The world's leading authorities describe the state of the art in Serre's conjecture and rational points on algebraic varieties.
Read More

A Problem-Based Approach

Author: Titu Andreescu,Dorin Andrica,Ion Cucurezeanu

Publisher: Springer Science & Business Media

ISBN: 0817645497

Category: Mathematics

Page: 345

View: 3171

This problem-solving book is an introduction to the study of Diophantine equations, a class of equations in which only integer solutions are allowed. The presentation features some classical Diophantine equations, including linear, Pythagorean, and some higher degree equations, as well as exponential Diophantine equations. Many of the selected exercises and problems are original or are presented with original solutions. An Introduction to Diophantine Equations: A Problem-Based Approach is intended for undergraduates, advanced high school students and teachers, mathematical contest participants — including Olympiad and Putnam competitors — as well as readers interested in essential mathematics. The work uniquely presents unconventional and non-routine examples, ideas, and techniques.
Read More

Proceedings of the International Conference Dynamical Systems: 100 Years after Poincaré, September 2012, Gijón, Spain

Author: Santiago Ibáñez,Jesús S. Pérez del Río,Antonio Pumariño,J. Ángel Rodríguez

Publisher: Springer Science & Business Media

ISBN: 3642388302

Category: Mathematics

Page: 411

View: 7395

This book contains papers based on talks given at the International Conference Dynamical Systems: 100 years after Poincaré held at the University of Oviedo, Gijón in Spain, September 2012. It provides an overview of the state of the art in the study of dynamical systems. This book covers a broad range of topics, focusing on discrete and continuous dynamical systems, bifurcation theory, celestial mechanics, delay difference and differential equations, Hamiltonian systems and also the classic challenges in planar vector fields. It also details recent advances and new trends in the field, including applications to a wide range of disciplines such as biology, chemistry, physics and economics. The memory of Henri Poincaré, who laid the foundations of the subject, inspired this exploration of dynamical systems. In honor of this remarkable mathematician, theoretical physicist, engineer and philosopher, the authors have made a special effort to place the reader at the frontiers of current knowledge in the discipline.
Read More

Author: Philipp Habegger,Gaël Rémond,Thomas Scanlon,Andrei Yafaev,Emmanuel Ullmo

Publisher: N.A

ISBN: 9782856298565

Category: Arithmetical algebraic geometry

Page: 284

View: 1175

"Following Faltings and Vojta's work proving the Mordell-Lang conjecture for abelian varieties and Raynaud's work proving the Manin-Mumford conjecture, many new diophantine questions appeared, often described as problems of unlikely intersections. The arithmetic of moduli spaces of abelian varieties and, more generally, Shimura varieties has been parallel-developed around the central André-Oort conjecture. These two themes can be placed in a common frame--the Zilber-Pink conjecture. This volume is an introduction to these problems and to the various techniques used: geometry, height theory, reductive groups and Hodge theory, Shimura varieties, and model theory via the notion of o-minimal structure."- publisher
Read More

Formalization without Foundationalism

Author: John T. Baldwin

Publisher: Cambridge University Press

ISBN: 1108103014

Category: Science

Page: 352

View: 6658

Major shifts in the field of model theory in the twentieth century have seen the development of new tools, methods, and motivations for mathematicians and philosophers. In this book, John T. Baldwin places the revolution in its historical context from the ancient Greeks to the last century, argues for local rather than global foundations for mathematics, and provides philosophical viewpoints on the importance of modern model theory for both understanding and undertaking mathematical practice. The volume also addresses the impact of model theory on contemporary algebraic geometry, number theory, combinatorics, and differential equations. This comprehensive and detailed book will interest logicians and mathematicians as well as those working on the history and philosophy of mathematics.
Read More

Author: J.H. Silverman

Publisher: Springer Science & Business Media

ISBN: 038769904X

Category: Mathematics

Page: 511

View: 7231

This book provides an introduction to the relatively new discipline of arithmetic dynamics. Whereas classical discrete dynamics is the study of iteration of self-maps of the complex plane or real line, arithmetic dynamics is the study of the number-theoretic properties of rational and algebraic points under repeated application of a polynomial or rational function. A principal theme of arithmetic dynamics is that many of the fundamental problems in the theory of Diophantine equations have dynamical analogs.This graduate-level text provides an entry for students into an active field of research and serves as a standard reference for researchers.
Read More

Counting Strategies

Author: Titu Andreescu,Zuming Feng

Publisher: Springer Science & Business Media

ISBN: 081768154X

Category: Mathematics

Page: 228

View: 4758

This unique approach to combinatorics is centered around unconventional, essay-type combinatorial examples, followed by a number of carefully selected, challenging problems and extensive discussions of their solutions. Topics encompass permutations and combinations, binomial coefficients and their applications, bijections, inclusions and exclusions, and generating functions. Each chapter features fully-worked problems, including many from Olympiads and other competitions, as well as a number of problems original to the authors; at the end of each chapter are further exercises to reinforce understanding, encourage creativity, and build a repertory of problem-solving techniques. The authors' previous text, "102 Combinatorial Problems," makes a fine companion volume to the present work, which is ideal for Olympiad participants and coaches, advanced high school students, undergraduates, and college instructors. The book's unusual problems and examples will interest seasoned mathematicians as well. "A Path to Combinatorics for Undergraduates" is a lively introduction not only to combinatorics, but to mathematical ingenuity, rigor, and the joy of solving puzzles.
Read More

Author: Erich Kaltofen,Stephen M. Watt

Publisher: Springer Science & Business Media

ISBN: 1461396476

Category: Computers

Page: 326

View: 1080

Advances in computer technology have had a tremendous impact on mathematics in the last two decades. In June of 1989, an international conference was held at MIT, bringing together mathematicians and computer scientists, to survey the work that has been done in computational mathematics, to report recent results in this field, and to discuss research directions as well as educational issues. This book presents a fascinating collection of contributions on topics ranging from computational algebra, and parallel computing, to mathematics education. Mathematicians interested in the computational aspects of their discipline as well as computer scientists interested in mathematical applications will enjoy the integrative view provided by this book.
Read More

Author: Vladimir I. Arnold

Publisher: Springer Science & Business Media

ISBN: 3642362435

Category: Mathematics

Page: 100

View: 7624

This book is concerned with one of the most fundamental questions of mathematics: the relationship between algebraic formulas and geometric images. At one of the first international mathematical congresses (in Paris in 1900), Hilbert stated a special case of this question in the form of his 16th problem (from his list of 23 problems left over from the nineteenth century as a legacy for the twentieth century). In spite of the simplicity and importance of this problem (including its numerous applications), it remains unsolved to this day (although, as you will now see, many remarkable results have been discovered).
Read More

Author: Bernd Sturmfels

Publisher: Springer Science & Business Media

ISBN: 3211774173

Category: Mathematics

Page: 197

View: 1514

This book is both an easy-to-read textbook for invariant theory and a challenging research monograph that introduces a new approach to the algorithmic side of invariant theory. Students will find the book an easy introduction to this "classical and new" area of mathematics. Researchers in mathematics, symbolic computation, and computer science will get access to research ideas, hints for applications, outlines and details of algorithms, examples and problems.
Read More

Author: Terence Tao

Publisher: American Mathematical Soc.

ISBN: 0821852809

Category: Mathematics

Page: 248

View: 8934

There are many bits and pieces of folklore in mathematics that are passed down from advisor to student, or from collaborator to collaborator, but which are too fuzzy and nonrigorous to be discussed in the formal literature. Traditionally, it was a matter of luck and location as to who learned such ``folklore mathematics''. But today, such bits and pieces can be communicated effectively and efficiently via the semiformal medium of research blogging. This book grew from such a blog. In 2007 Terry Tao began a mathematical blog to cover a variety of topics, ranging from his own research and other recent developments in mathematics, to lecture notes for his classes, to nontechnical puzzles and expository articles. The first two years of the blog have already been published by the American Mathematical Society. The posts from the third year are being published in two volumes. This second volume contains a broad selection of mathematical expositions and self-contained technical notes in many areas of mathematics, such as logic, mathematical physics, combinatorics, number theory, statistics, theoretical computer science, and group theory. Tao has an extraordinary ability to explain deep results to his audience, which has made his blog quite popular. Some examples of this facility in the present book are the tale of two students and a multiple-choice exam being used to explain the $P = NP$ conjecture and a discussion of "no self-defeating object" arguments that starts from a schoolyard number game and ends with results in logic, game theory, and theoretical physics. The first volume consists of a second course in real analysis, together with related material from the blog, and it can be read independently.
Read More