Practical Solutions for Business Applications, Third Edition

Author: Kattamuri S. Sarma

Publisher: SAS Institute

ISBN: 1635260388

Category: Computers

Page: 574

View: 2322

A step-by-step guide to predictive modeling! Kattamuri Sarma's Predictive Modeling with SAS Enterprise Miner: Practical Solutions for Business Applications, Third Edition, will show you how to develop and test predictive models quickly using SAS Enterprise Miner. Using realistic data, the book explains complex methods in a simple and practical way to readers from different backgrounds and industries. Incorporating the latest version of Enterprise Miner, this third edition also expands the section on time series. Written for business analysts, data scientists, statisticians, students, predictive modelers, and data miners, this comprehensive text provides examples that will strengthen your understanding of the essential concepts and methods of predictive modeling. Topics covered include logistic regression, regression, decision trees, neural networks, variable clustering, observation clustering, data imputation, binning, data exploration, variable selection, variable transformation, and much more, including analysis of textual data. Develop predictive models quickly, learn how to test numerous models and compare the results, gain an in-depth understanding of predictive models and multivariate methods, and discover how to do in-depth analysis. Do it all with Predictive Modeling with SAS Enterprise Miner!
Read More

Practical Solutions for Business Applications, Second Edition

Author: Kattamuri S. Sarma, PhD

Publisher: SAS Institute

ISBN: 1607648180

Category: Mathematics

Page: 500

View: 5174

Learn the theory behind and methods for predictive modeling using SAS Enterprise Miner. Learn how to produce predictive models and prepare presentation-quality graphics in record time with Predictive Modeling with SAS Enterprise Miner: Practical Solutions for Business Applications, Second Edition. If you are a graduate student, researcher, or statistician interested in predictive modeling; a data mining expert who wants to learn SAS Enterprise Miner; or a business analyst looking for an introduction to predictive modeling using SAS Enterprise Miner, you'll be able to develop predictive models quickly and effectively using the theory and examples presented in this book. Author Kattamuri Sarma offers the theory behind, programming steps for, and examples of predictive modeling with SAS Enterprise Miner, along with exercises at the end of each chapter. You'll gain a comprehensive awareness of how to find solutions for your business needs. This second edition features expanded coverage of the SAS Enterprise Miner nodes, now including File Import, Time Series, Variable Clustering, Cluster, Interactive Binning, Principal Components, AutoNeural, DMNeural, Dmine Regression, Gradient Boosting, Ensemble, and Text Mining. Develop predictive models quickly, learn how to test numerous models and compare the results, gain an in-depth understanding of predictive models and multivariate methods, and discover how to do in-depth analysis. Do it all with Predictive Modeling with SAS Enterprise Miner. This book is part of the SAS Press program.
Read More

Practical Solutions for Business Applications

Author: Kattamuri S. Sarma

Publisher: SAS Institute

ISBN: 1590477030

Category: Computers

Page: 360

View: 8410

Providing an in-depth explanation of the methodology and the theory behind each tool in SAS Enterprise Miner software, Dr. Sarma covers such topics as data collection, data cleaning, data exploration, logistic regression models, and more. The CD-ROM includes data sets and SAS code.
Read More

Author: James B. Davis, Ph.D.

Publisher: SAS Institute

ISBN: 1599947242

Category: Computers

Page: 785

View: 6816

Discover how easy it is to perform statistical analysis using the power of SAS Enterprise Guide. Suitable for students new to statistics and to SAS, as well as for experienced professionals, James Davis's Statistics Using SAS Enterprise Guide provides an introduction to the basics of SAS Enterprise Guide and to statistics. Early chapters in this easy-to-follow book address topics such as how to work with data sets (including SAS data sets, data sets in Microsoft Excel, and other formats) and how to perform queries. A separate chapter on descriptive statistics offers a wide range of techniques and multiple presentation options. Later chapters provide detailed discussions (without calculus) of statistical theory and step-by-step examples that illustrate how to apply the appropriate SAS Enterprise Guide tasks, including both complete output and thorough analyses of the results. These chapters present examples of one-sample inference, two-sample inference, analysis of variance, correlation and regression, and table analysis
Read More

Author: Randall S. Collica

Publisher: SAS Institute

ISBN: 1629605271

Category: Computers

Page: 356

View: 6317

Understanding your customers is the key to your company’s success! Segmentation is one of the first and most basic machine learning methods. It can be used by companies to understand their customers better, boost relevance of marketing messaging, and increase efficacy of predictive models. In Customer Segmentation and Clustering Using SAS Enterprise Miner, Third Edition, Randy Collica explains, in step-by-step fashion, the most commonly available techniques for segmentation using the powerful data mining software SAS Enterprise Miner. A working guide that uses real-world data, this new edition will show you how to segment customers more intelligently and achieve the one-to-one customer relationship that your business needs. Step-by-step examples and exercises, using a number of machine learning and data mining techniques, clearly illustrate the concepts of segmentation and clustering in the context of customer relationship management. The book includes four parts, each of which increases in complexity. Part 1 reviews the basics of segmentation and clustering at an introductory level, providing examples from a variety of industries. Part 2 offers an in-depth treatment of segmentation with practical topics, such as when and how to update your models. Part 3 goes beyond traditional segmentation practices to introduce recommended strategies for clustering product affinities, handling missing data, and incorporating textual records into your predictive model with SAS Text Miner. Finally, part 4 takes segmentation to a new level with advanced techniques, such as clustering of product associations, developing segmentation-scoring models from customer survey data, combining segmentations using ensemble segmentation, and segmentation of customer transactions. New to the third edition is a chapter that focuses on predictive models within microsegments and combined segments, and a new parallel process technique is introduced using SAS Factory Miner. In addition, all examples have been updated to the latest version of SAS Enterprise Miner.
Read More

Author: Robert Nisbet,Gary Miner,Ken Yale

Publisher: Elsevier

ISBN: 0124166458

Category: Mathematics

Page: 822

View: 3106

Handbook of Statistical Analysis and Data Mining Applications, Second Edition, is a comprehensive professional reference book that guides business analysts, scientists, engineers and researchers, both academic and industrial, through all stages of data analysis, model building and implementation. The handbook helps users discern technical and business problems, understand the strengths and weaknesses of modern data mining algorithms and employ the right statistical methods for practical application. This book is an ideal reference for users who want to address massive and complex datasets with novel statistical approaches and be able to objectively evaluate analyses and solutions. It has clear, intuitive explanations of the principles and tools for solving problems using modern analytic techniques and discusses their application to real problems in ways accessible and beneficial to practitioners across several areas—from science and engineering, to medicine, academia and commerce. Includes input by practitioners for practitioners Includes tutorials in numerous fields of study that provide step-by-step instruction on how to use supplied tools to build models Contains practical advice from successful real-world implementations Brings together, in a single resource, all the information a beginner needs to understand the tools and issues in data mining to build successful data mining solutions Features clear, intuitive explanations of novel analytical tools and techniques, and their practical applications
Read More

Techniques for Better Predictive Modeling and Analysis of Big Data, Third Edition

Author: Bruce Ratner

Publisher: CRC Press

ISBN: 1351652389

Category: Computers

Page: 662

View: 4494

The third edition of a bestseller, Statistical and Machine-Learning Data Mining: Techniques for Better Predictive Modeling and Analysis of Big Data is still the only book, to date, to distinguish between statistical data mining and machine-learning data mining. is a compilation of new and creative data mining techniques, which address the scaling-up of the framework of classical and modern statistical methodology, for predictive modeling and analysis of big data. SM-DM provides proper solutions to common problems facing the newly minted data scientist in the data mining discipline. Its presentation focuses on the needs of the data scientists (commonly known as statisticians, data miners and data analysts), delivering practical yet powerful, simple yet insightful quantitative techniques, most of which use the "old" statistical methodologies improved upon by the new machine learning influence.
Read More

A Beginner's Guide

Author: Olivia Parr-Rud

Publisher: SAS Institute

ISBN: 1629593281

Category: Mathematics

Page: 182

View: 2144

This tutorial for data analysts new to SAS Enterprise Guide and SAS Enterprise Miner provides valuable experience using powerful statistical software to complete the kinds of business analytics common to most industries. Today’s businesses increasingly use data to drive decisions that keep them competitive. Especially with the influx of big data, the importance of data analysis to improve every dimension of business cannot be overstated. Data analysts are therefore in demand; however, many hires and prospective hires, although talented with respect to business and statistics, lack the know-how to perform business analytics with advanced statistical software. Business Analytics Using SAS Enterprise Guide and SAS Enterprise Miner is a beginner’s guide with clear, illustrated, step-by-step instructions that will lead you through examples based on business case studies. You will formulate the business objective, manage the data, and perform analyses that you can use to optimize marketing, risk, and customer relationship management, as well as business processes and human resources. Topics include descriptive analysis, predictive modeling and analytics, customer segmentation, market analysis, share-of-wallet analysis, penetration analysis, and business intelligence. This book is part of the SAS Press program.
Read More

Forward Looking Capabilities to Improve Business Performance

Author: Lawrence Maisel,Gary Cokins

Publisher: John Wiley & Sons

ISBN: 1118240154

Category: Business & Economics

Page: 272

View: 7424

Discover the breakthrough tool your company can use to make winning decisions This forward-thinking book addresses the emergence of predictive business analytics, how it can help redefine the way your organization operates, and many of the misconceptions that impede the adoption of this new management capability. Filled with case examples, Predictive Business Analytics defines ways in which specific industries have applied these techniques and tools and how predictive business analytics can complement other financial applications such as budgeting, forecasting, and performance reporting. Examines how predictive business analytics can help your organization understand its various drivers of performance, their relationship to future outcomes, and improve managerial decision-making Looks at how to develop new insights and understand business performance based on extensive use of data, statistical and quantitative analysis, and explanatory and predictive modeling Written for senior financial professionals, as well as general and divisional senior management Visionary and effective, Predictive Business Analytics reveals how you can use your business's skills, technologies, tools, and processes for continuous analysis of past business performance to gain forward-looking insight and drive business decisions and actions.
Read More

Author: SAS Institute

Publisher: SAS Institute

ISBN: 1612907717

Category: Computers

Page: 80

View: 1660

Introduces the core functionality of SAS Enterprise Miner 12.3 on SAS 9.4 and shows how to perform basic data-mining tasks. Provides step-by-step examples that create a complete process-flow diagram including graphic results.
Read More

Author: A. John Bailer

Publisher: SAS Institute

ISBN: 9781607645047

Category: Computers

Page: 460

View: 4478

In this guide, the author integrates SAS tools with interesting statistical applications and uses SAS 9.2 as a platform to introduce programming ideas for statistical analysis, data management, and data display and simulation.
Read More

Author: Lawrence S. Meyers,Glenn Gamst,A. J. Guarino

Publisher: Cambridge University Press

ISBN: 0521112680

Category: Business & Economics

Page: 378

View: 8631

This book presents the basic procedures for utilizing SAS Enterprise Guide to analyze statistical data. SAS Enterprise Guide is a graphical user interface (point and click) to the main SAS application. Each chapter contains a brief conceptual overview and then guides the reader through concrete step-by-step examples to complete the analyses. The eleven sections of the book cover a wide range of statistical procedures including descriptive statistics, correlation and simple regression, t tests, one-way chi square, data transformations, multiple regression, analysis of variance, analysis of covariance, multivariate analysis of variance, factor analysis, and canonical correlation analysis. Designed to be used either as a stand-alone resource or as an accompaniment to a statistics course, the book offers a smooth path to statistical analysis with SAS Enterprise Guide for advanced undergraduate and beginning graduate students, as well as professionals in psychology, education, business, health, social work, sociology, and many other fields.
Read More

An Introduction to Lifetime Probabilities

Author: Jorge Ribeiro

Publisher: SAS Institute

ISBN: 1629605190

Category: Computers

Page: 236

View: 1259

Solve business problems involving time-to-event and resulting probabilities by following the modeling tutorials in Business Survival Analysis Using SAS®: An Introduction to Lifetime Probabilities, the first book to be published in the field of business survival analysis! Survival analysis is a challenge. Books applying to health sciences exist, but nothing about survival applications for business has been available until now. Written for analysts, forecasters, econometricians, and modelers who work in marketing or credit risk and have little SAS modeling experience, Business Survival Analysis Using SAS® builds on a foundation of SAS code that works in any survival model and features numerous annotated graphs, coefficients, and statistics linked to real business situations and data sets. This guide also helps recent graduates who know the statistics but do not necessarily know how to apply them get up and running in their jobs. By example, it teaches the techniques while avoiding advanced theoretical underpinnings so that busy professionals can rapidly deliver a survival model to meet common business needs. From first principles, this book teaches survival analysis by highlighting its relevance to business cases. A pragmatic introduction to survival analysis models, it leads you through business examples that contextualize and motivate the statistical methods and SAS coding. Specifically, it illustrates how to build a time-to-next-purchase survival model in SAS® Enterprise Miner, and it relates each step to the underlying statistics and to Base SAS® and SAS/STAT® software. Following the many examples—from data preparation to validation to scoring new customers—you will learn to develop and apply survival analysis techniques to scenarios faced by companies in the financial services, insurance, telecommunication, and marketing industries, including the following scenarios: Time-to-next-purchase for marketing Employer turnover for human resources Small business portfolio macroeconometric stress tests for banks International Financial Reporting Standard (IFRS 9) lifetime probability of default for banks and building societies "Churn," or attrition, models for the telecommunications and insurance industries
Read More

Concepts, Techniques, and Applications in R

Author: Galit Shmueli,Peter C. Bruce,Inbal Yahav,Nitin R. Patel,Kenneth C. Lichtendahl, Jr.

Publisher: John Wiley & Sons

ISBN: 1118879333

Category: Mathematics

Page: 574

View: 3587

Data Mining for Business Analytics: Concepts, Techniques, and Applications in R presents an applied approach to data mining concepts and methods, using R software for illustration Readers will learn how to implement a variety of popular data mining algorithms in R (a free and open-source software) to tackle business problems and opportunities. This is the fifth version of this successful text, and the first using R. It covers both statistical and machine learning algorithms for prediction, classification, visualization, dimension reduction, recommender systems, clustering, text mining and network analysis. It also includes: • Two new co-authors, Inbal Yahav and Casey Lichtendahl, who bring both expertise teaching business analytics courses using R, and data mining consulting experience in business and government • Updates and new material based on feedback from instructors teaching MBA, undergraduate, diploma and executive courses, and from their students • More than a dozen case studies demonstrating applications for the data mining techniques described • End-of-chapter exercises that help readers gauge and expand their comprehension and competency of the material presented • A companion website with more than two dozen data sets, and instructor materials including exercise solutions, PowerPoint slides, and case solutions www.dataminingbook.com Data Mining for Business Analytics: Concepts, Techniques, and Applications in R is an ideal textbook for graduate and upper-undergraduate level courses in data mining, predictive analytics, and business analytics. This new edition is also an excellent reference for analysts, researchers, and practitioners working with quantitative methods in the fields of business, finance, marketing, computer science, and information technology. “ This book has by far the most comprehensive review of business analytics methods that I have ever seen, covering everything from classical approaches such as linear and logistic regression, through to modern methods like neural networks, bagging and boosting, and even much more business specific procedures such as social network analysis and text mining. If not the bible, it is at the least a definitive manual on the subject.” Gareth M. James, University of Southern California and co-author (with Witten, Hastie and Tibshirani) of the best-selling book An Introduction to Statistical Learning, with Applications in R Galit Shmueli, PhD, is Distinguished Professor at National Tsing Hua University’s Institute of Service Science. She has designed and instructed data mining courses since 2004 at University of Maryland, Statistics.com, Indian School of Business, and National Tsing Hua University, Taiwan. Professor Shmueli is known for her research and teaching in business analytics, with a focus on statistical and data mining methods in information systems and healthcare. She has authored over 70 publications including books. Peter C. Bruce is President and Founder of the Institute for Statistics Education at Statistics.com. He has written multiple journal articles and is the developer of Resampling Stats software. He is the author of Introductory Statistics and Analytics: A Resampling Perspective (Wiley) and co-author of Practical Statistics for Data Scientists: 50 Essential Concepts (O’Reilly). Inbal Yahav, PhD, is Professor at the Graduate School of Business Administration at Bar-Ilan University, Israel. She teaches courses in social network analysis, advanced research methods, and software quality assurance. Dr. Yahav received her PhD in Operations Research and Data Mining from the University of Maryland, College Park. Nitin R. Patel, PhD, is Chairman and cofounder of Cytel, Inc., based in Cambridge, Massachusetts. A Fellow of the American Statistical Association, Dr. Patel has also served as a Visiting Professor at the Massachusetts Institute of Technology and at Harvard University. He is a Fellow of the Computer Society of India and was a professor at the Indian Institute of Management, Ahmedabad, for 15 years. Kenneth C. Lichtendahl, Jr., PhD, is Associate Professor at the University of Virginia. He is the Eleanor F. and Phillip G. Rust Professor of Business Administration and teaches MBA courses in decision analysis, data analysis and optimization, and managerial quantitative analysis. He also teaches executive education courses in strategic analysis and decision-making, and managing the corporate aviation function.
Read More

Business Case Studies Using SAS

Author: Gerhard Svolba

Publisher: SAS Institute

ISBN: 163526054X

Category: Mathematics

Page: 490

View: 1686

See how data science can answer the questions your business faces! Applying Data Science: Business Case Studies Using SAS, by Gerhard Svolba, shows you the benefits of analytics, how to gain more insight into your data, and how to make better decisions. In eight entertaining and real-world case studies, Svolba combines data science and advanced analytics with business questions, illustrating them with data and SAS code. The case studies range from a variety of fields, including performing headcount survival analysis for employee retention, forecasting the demand for new projects, using Monte Carlo simulation to understand outcome distribution, among other topics. The data science methods covered include Kaplan-Meier estimates, Cox Proportional Hazard Regression, ARIMA models, Poisson regression, imputation of missing values, variable clustering, and much more! Written for business analysts, statisticians, data miners, data scientists, and SAS programmers, Applying Data Science bridges the gap between high-level, business-focused books that skimp on the details and technical books that only show SAS code with no business context.
Read More

Author: Barry de Ville,Padraic Neville

Publisher: SAS Institute

ISBN: 1629591009

Category: Mathematics

Page: 268

View: 5258

Decision Trees for Analytics Using SAS Enterprise Miner is the most comprehensive treatment of decision tree theory, use, and applications available in one easy-to-access place. This book illustrates the application and operation of decision trees in business intelligence, data mining, business analytics, prediction, and knowledge discovery. It explains in detail the use of decision trees as a data mining technique and how this technique complements and supplements data mining approaches such as regression, as well as other business intelligence applications that incorporate tabular reports, OLAP, or multidimensional cubes. An expanded and enhanced release of Decision Trees for Business Intelligence and Data Mining Using SAS Enterprise Miner, this book adds up-to-date treatments of boosting and high-performance forest approaches and rule induction. There is a dedicated section on the most recent findings related to bias reduction in variable selection. It provides an exhaustive treatment of the end-to-end process of decision tree construction and the respective considerations and algorithms, and it includes discussions of key issues in decision tree practice. Analysts who have an introductory understanding of data mining and who are looking for a more advanced, in-depth look at the theory and methods of a decision tree approach to business intelligence and data mining will benefit from this book. This book is part of the SAS Press program.
Read More

Author: Daniel T. Larose,Chantal D. Larose

Publisher: John Wiley & Sons

ISBN: 1118868676

Category: Computers

Page: 824

View: 3534

Learn methods of data analysis and their application to real-world data sets This updated second edition serves as an introduction to data mining methods and models, including association rules, clustering, neural networks, logistic regression, and multivariate analysis. The authors apply a unified “white box” approach to data mining methods and models. This approach is designed to walk readers through the operations and nuances of the various methods, using small data sets, so readers can gain an insight into the inner workings of the method under review. Chapters provide readers with hands-on analysis problems, representing an opportunity for readers to apply their newly-acquired data mining expertise to solving real problems using large, real-world data sets. Data Mining and Predictive Analytics, Second Edition: Offers comprehensive coverage of association rules, clustering, neural networks, logistic regression, multivariate analysis, and R statistical programming language Features over 750 chapter exercises, allowing readers to assess their understanding of the new material Provides a detailed case study that brings together the lessons learned in the book Includes access to the companion website, www.dataminingconsultant.com, with exclusive password-protected instructor content Data Mining and Predictive Analytics, Second Edition will appeal to computer science and statistic students, as well as students in MBA programs, and chief executives.
Read More

Get actionable insights from your Big Data using the power of SAS

Author: David Pope

Publisher: Packt Publishing Ltd

ISBN: 1788294319

Category: Computers

Page: 266

View: 8931

Leverage the capabilities of SAS to process and analyze Big Data About This Book Combine SAS with platforms such as Hadoop, SAP HANA, and Cloud Foundry-based platforms for effecient Big Data analytics Learn how to use the web browser-based SAS Studio and iPython Jupyter Notebook interfaces with SAS Practical, real-world examples on predictive modeling, forecasting, optimizing and reporting your Big Data analysis with SAS Who This Book Is For SAS professionals and data analysts who wish to perform analytics on Big Data using SAS to gain actionable insights will find this book to be very useful. If you are a data science professional looking to perform large-scale analytics with SAS, this book will also help you. A basic understanding of SAS will be helpful, but is not mandatory. What You Will Learn Configure a free version of SAS in order do hands-on exercises dealing with data management, analysis, and reporting. Understand the basic concepts of the SAS language which consists of the data step (for data preparation) and procedures (or PROCs) for analysis. Make use of the web browser based SAS Studio and iPython Jupyter Notebook interfaces for coding in the SAS, DS2, and FedSQL programming languages. Understand how the DS2 programming language plays an important role in Big Data preparation and analysis using SAS Integrate and work efficiently with Big Data platforms like Hadoop, SAP HANA, and cloud foundry based systems. In Detail SAS has been recognized by Money Magazine and Payscale as one of the top business skills to learn in order to advance one's career. Through innovative data management, analytics, and business intelligence software and services, SAS helps customers solve their business problems by allowing them to make better decisions faster. This book introduces the reader to the SAS and how they can use SAS to perform efficient analysis on any size data, including Big Data. The reader will learn how to prepare data for analysis, perform predictive, forecasting, and optimization analysis and then deploy or report on the results of these analyses. While performing the coding examples within this book the reader will learn how to use the web browser based SAS Studio and iPython Jupyter Notebook interfaces for working with SAS. Finally, the reader will learn how SAS's architecture is engineered and designed to scale up and/or out and be combined with the open source offerings such as Hadoop, Python, and R. By the end of this book, you will be able to clearly understand how you can efficiently analyze Big Data using SAS. Style and approach The book starts off by introducing the reader to SAS and the SAS programming language which provides data management, analytical, and reporting capabilities. Most chapters include hands on examples which highlights how SAS provides The Power to Know©. The reader will learn that if they are looking to perform large-scale data analysis that SAS provides an open platform engineered and designed to scale both up and out which allows the power of SAS to combine with open source offerings such as Hadoop, Python, and R.
Read More

Author: Stephen McDaniel,Chris Hemedinger

Publisher: John Wiley & Sons

ISBN: 9781118044018

Category: Computers

Page: 408

View: 2559

Created in partnership with SAS, this book explores SAS, a business intelligence software that can be used in any business setting or enterprise for data delivery, reporting, data mining, forecasting, statistical analysis, and more SAS employee and technologist Stephen McDaniel combines real-world expertise and a friendly writing style to introduce readers to SAS basics Covers crucial topics such as getting various types of data into the software, producing reports, working with the data, basic SAS programming, macros, and working with SAS and databases
Read More

Theory and Applications

Author: Iain L. J. Brown, Ph.D

Publisher: SAS Institute

ISBN: 1629594865

Category: Mathematics

Page: 174

View: 5818

Combine complex concepts facing the financial sector with the software toolsets available to analysts. The credit decisions you make are dependent on the data, models, and tools that you use to determine them. Developing Credit Risk Models Using SAS Enterprise Miner and SAS/STAT: Theory and Applications combines both theoretical explanation and practical applications to define as well as demonstrate how you can build credit risk models using SAS Enterprise Miner and SAS/STAT and apply them into practice. The ultimate goal of credit risk is to reduce losses through better and more reliable credit decisions that can be developed and deployed quickly. In this example-driven book, Dr. Brown breaks down the required modeling steps and details how this would be achieved through the implementation of SAS Enterprise Miner and SAS/STAT. Users will solve real-world risk problems as well as comprehensively walk through model development while addressing key concepts in credit risk modeling. The book is aimed at credit risk analysts in retail banking, but its applications apply to risk modeling outside of the retail banking sphere. Those who would benefit from this book include credit risk analysts and managers alike, as well as analysts working in fraud, Basel compliancy, and marketing analytics. It is targeted for intermediate users with a specific business focus and some programming background is required. Efficient and effective management of the entire credit risk model lifecycle process enables you to make better credit decisions. Developing Credit Risk Models Using SAS Enterprise Miner and SAS/STAT: Theory and Applications demonstrates how practitioners can more accurately develop credit risk models as well as implement them in a timely fashion. This book is part of the SAS Press Program.
Read More