Author: Robert V. Hogg,Elliot A. Tanis

Publisher: Pearson Higher Ed

ISBN: 1292062568

Category: Mathematics

Page: 560

View: 2429

For a one- or two-semester course; calculus background presumed, no previous study of probability or statistics is required. Written by three veteran statisticians, this applied introduction to probability and statistics emphasizes the existence of variation in almost every process, and how the study of probability and statistics helps us understand this variation. Designed for students with a background in calculus, this book continues to reinforce basic mathematical concepts with numerous real-world examples and applications to illustrate the relevance of key concepts.
Read More

Author: Elliot A. Tanis,Robert V. Hogg

Publisher: Prentice Hall

ISBN: N.A

Category: Mathematics

Page: 359

View: 7360

This innovative new introduction to Mathematical Statistics covers the important concept of estimation at a point much earlier (Chapter 2) than others on this subject. Applies mathematical statistics to topics such as insurance, Pap smear tests, estimating the number of whales in an ocean, fitting models, filling 12 ounce containers, environmental issues, and results in certain sporting events. Includes summaries of the most important aspects of discrete distributions, continuous distributions, confidence intervals, and tests of hypotheses. Provides computer applications for data analysis and also for theoretical solutions such as simulation and bootstrapping. A comprehensive reference for individuals who need to brush up on their knowledge of statistics.
Read More

Author: Robert V. Hogg,Elliot A. Tanis

Publisher: N.A

ISBN: N.A

Category: Mathematics

Page: 704

View: 1031

This user-friendly introduction to the mathematics of probability and statistics (for readers with a background in calculus) uses numerous applications--drawn from biology, education, economics, engineering, environmental studies, exercise science, health science, manufacturing, opinion polls, psychology, sociology, and sports--to help explain and motivate the concepts. A review of selected mathematical techniques is included, and an accompanying CD-ROM contains many of the figures (many animated), and the data included in the examples and exercises (stored in both Minitab compatible format and ASCII). Empirical and Probability Distributions. Probability. Discrete Distributions. Continuous Distributions. Multivariable Distributions. Sampling Distribution Theory. Importance of Understanding Variability. Estimation. Tests of Statistical Hypotheses. Theory of Statistical Inference. Quality Improvement Through Statistical Methods. For anyone interested in the Mathematics of Probability and Statistics.
Read More

Author: Leonard Asimow, Ph.D., ASA,Mark Maxwell, Ph.D., ASA

Publisher: ACTEX Publications

ISBN: 1625424728

Category: Mathematics

Page: 600

View: 3835

This text is listed on the Course of Reading for SOA Exam P. Probability and Statistics with Applications is an introductory textbook designed to make the subject accessible to college freshmen and sophomores concurrent with Calc II and III, with a prerequisite of just one smester of calculus. It is organized specifically to meet the needs of students who are preparing for the Society of Actuaries qualifying Examination P and Casualty Actuarial Society's new Exam S. Sample actuarial exam problems are integrated throughout the text along with an abundance of illustrative examples and 870 exercises. The book provides the content to serve as the primary text for a standard two-semester advanced undergraduate course in mathematical probability and statistics. 2nd Edition Highlights Expansion of statistics portion to cover CAS ST and all of the statistics portion of CAS SAbundance of examples and sample exam problems for both Exams SOA P and CAS SCombines best attributes of a solid text and an actuarial exam study manual in one volumeWidely used by college freshmen and sophomores to pass SOA Exam P early in their college careersMay be used concurrently with calculus coursesNew or rewritten sections cover topics such as discrete and continuous mixture distributions, non-homogeneous Poisson processes, conjugate pairs in Bayesian estimation, statistical sufficiency, non-parametric statistics, and other topics also relevant to SOA Exam C.
Read More

Author: George G. Roussas

Publisher: Academic Press

ISBN: 0128004371

Category: Mathematics

Page: 624

View: 1892

An Introduction to Probability and Statistical Inference, Second Edition, guides you through probability models and statistical methods and helps you to think critically about various concepts. Written by award-winning author George Roussas, this book introduces readers with no prior knowledge in probability or statistics to a thinking process to help them obtain the best solution to a posed question or situation. It provides a plethora of examples for each topic discussed, giving the reader more experience in applying statistical methods to different situations. This text contains an enhanced number of exercises and graphical illustrations where appropriate to motivate the reader and demonstrate the applicability of probability and statistical inference in a great variety of human activities. Reorganized material is included in the statistical portion of the book to ensure continuity and enhance understanding. Each section includes relevant proofs where appropriate, followed by exercises with useful clues to their solutions. Furthermore, there are brief answers to even-numbered exercises at the back of the book and detailed solutions to all exercises are available to instructors in an Answers Manual. This text will appeal to advanced undergraduate and graduate students, as well as researchers and practitioners in engineering, business, social sciences or agriculture. Content, examples, an enhanced number of exercises, and graphical illustrations where appropriate to motivate the reader and demonstrate the applicability of probability and statistical inference in a great variety of human activities Reorganized material in the statistical portion of the book to ensure continuity and enhance understanding A relatively rigorous, yet accessible and always within the prescribed prerequisites, mathematical discussion of probability theory and statistical inference important to students in a broad variety of disciplines Relevant proofs where appropriate in each section, followed by exercises with useful clues to their solutions Brief answers to even-numbered exercises at the back of the book and detailed solutions to all exercises available to instructors in an Answers Manual
Read More

Author: George Casella,Roger L. Berger

Publisher: Duxbury Press

ISBN: N.A

Category: Mathematics

Page: 660

View: 1507

Casella and Berger's new edition builds the theoretical statistics from the first principals of probability theory. Thoroughly and completely, the authors start with the basics of probability and then move on to develop the theory of statistical inference using techniques, definitions, and statistical concepts.
Read More

A Concise Course in Statistical Inference

Author: Larry Wasserman

Publisher: Springer Science & Business Media

ISBN: 0387217363

Category: Mathematics

Page: 442

View: 7282

Taken literally, the title "All of Statistics" is an exaggeration. But in spirit, the title is apt, as the book does cover a much broader range of topics than a typical introductory book on mathematical statistics. This book is for people who want to learn probability and statistics quickly. It is suitable for graduate or advanced undergraduate students in computer science, mathematics, statistics, and related disciplines. The book includes modern topics like non-parametric curve estimation, bootstrapping, and classification, topics that are usually relegated to follow-up courses. The reader is presumed to know calculus and a little linear algebra. No previous knowledge of probability and statistics is required. Statistics, data mining, and machine learning are all concerned with collecting and analysing data.
Read More

Probabilistic Models and Statistical Inference

Author: Ilia B. Frenkel,Alex Karagrigoriou,Anatoly Lisnianski,Andre V. Kleyner

Publisher: John Wiley & Sons

ISBN: 1118701895

Category: Technology & Engineering

Page: 456

View: 2059

This complete resource on the theory and applications of reliability engineering, probabilistic models and risk analysis consolidates all the latest research, presenting the most up-to-date developments in this field. With comprehensive coverage of the theoretical and practical issues of both classic and modern topics, it also provides a unique commemoration to the centennial of the birth of Boris Gnedenko, one of the most prominent reliability scientists of the twentieth century. Key features include: expert treatment of probabilistic models and statistical inference from leading scientists, researchers and practitioners in their respective reliability fields detailed coverage of multi-state system reliability, maintenance models, statistical inference in reliability, systemability, physics of failures and reliability demonstration many examples and engineering case studies to illustrate the theoretical results and their practical applications in industry Applied Reliability Engineering and Risk Analysis is one of the first works to treat the important areas of degradation analysis, multi-state system reliability, networks and large-scale systems in one comprehensive volume. It is an essential reference for engineers and scientists involved in reliability analysis, applied probability and statistics, reliability engineering and maintenance, logistics, and quality control. It is also a useful resource for graduate students specialising in reliability analysis and applied probability and statistics. Dedicated to the Centennial of the birth of Boris Gnedenko, renowned Russian mathematician and reliability theorist
Read More

The Art and Science of Learning from Data -Preliminary Edition

Author: Alan Agresti,Christine A. Franklin

Publisher: Prentice Hall

ISBN: 9780131857643

Category: Statistics

Page: 616

View: 9481

Provides a conceptual introduction to introductory statistics that is accessible to students. This work is designed for algebra-based Introductory Statistics Courses.
Read More

Author: Nitis Mukhopadhyay

Publisher: CRC Press

ISBN: 1420017403

Category: Mathematics

Page: 304

View: 2756

This gracefully organized text reveals the rigorous theory of probability and statistical inference in the style of a tutorial, using worked examples, exercises, figures, tables, and computer simulations to develop and illustrate concepts. Drills and boxed summaries emphasize and reinforce important ideas and special techniques. Beginning with a review of the basic concepts and methods in probability theory, moments, and moment generating functions, the author moves to more intricate topics. Introductory Statistical Inference studies multivariate random variables, exponential families of distributions, and standard probability inequalities. It develops the Helmert transformation for normal distributions, introduces the notions of convergence, and spotlights the central limit theorems. Coverage highlights sampling distributions, Basu's theorem, Rao-Blackwellization and the Cramér-Rao inequality. The text also provides in-depth coverage of Lehmann-Scheffé theorems, focuses on tests of hypotheses, describes Bayesian methods and the Bayes' estimator, and develops large-sample inference. The author provides a historical context for statistics and statistical discoveries and answers to a majority of the end-of-chapter exercises. Designed primarily for a one-semester, first-year graduate course in probability and statistical inference, this text serves readers from varied backgrounds, ranging from engineering, economics, agriculture, and bioscience to finance, financial mathematics, operations and information management, and psychology.
Read More

Algorithms, Evidence, and Data Science

Author: Bradley Efron,Trevor Hastie

Publisher: Cambridge University Press

ISBN: 1108107958

Category: Mathematics

Page: N.A

View: 309

The twenty-first century has seen a breathtaking expansion of statistical methodology, both in scope and in influence. 'Big data', 'data science', and 'machine learning' have become familiar terms in the news, as statistical methods are brought to bear upon the enormous data sets of modern science and commerce. How did we get here? And where are we going? This book takes us on an exhilarating journey through the revolution in data analysis following the introduction of electronic computation in the 1950s. Beginning with classical inferential theories - Bayesian, frequentist, Fisherian - individual chapters take up a series of influential topics: survival analysis, logistic regression, empirical Bayes, the jackknife and bootstrap, random forests, neural networks, Markov chain Monte Carlo, inference after model selection, and dozens more. The distinctly modern approach integrates methodology and algorithms with statistical inference. The book ends with speculation on the future direction of statistics and data science.
Read More

Author: Alexandre Brouste

Publisher: Elsevier

ISBN: 0081012616

Category: Business & Economics

Page: 202

View: 4122

Finance and insurance companies are facing a wide range of parametric statistical problems. Statistical experiments generated by a sample of independent and identically distributed random variables are frequent and well understood, especially those consisting of probability measures of an exponential type. However, the aforementioned applications also offer non-classical experiments implying observation samples of independent but not identically distributed random variables or even dependent random variables. Three examples of such experiments are treated in this book. First, the Generalized Linear Models are studied. They extend the standard regression model to non-Gaussian distributions. Statistical experiments with Markov chains are considered next. Finally, various statistical experiments generated by fractional Gaussian noise are also described. In this book, asymptotic properties of several sequences of estimators are detailed. The notion of asymptotical efficiency is discussed for the different statistical experiments considered in order to give the proper sense of estimation risk. Eighty examples and computations with R software are given throughout the text. Examines a range of statistical inference methods in the context of finance and insurance applications Presents the LAN (local asymptotic normality) property of likelihoods Combines the proofs of LAN property for different statistical experiments that appears in financial and insurance mathematics Provides the proper description of such statistical experiments and invites readers to seek optimal estimators (performed in R) for such statistical experiments
Read More

Author: Narayan C. Giri

Publisher: Academic Press

ISBN: 1483263339

Category: Mathematics

Page: 336

View: 2733

Multivariate Statistical Inference is a 10-chapter text that covers the theoretical and applied aspects of multivariate analysis, specifically the multivariate normal distribution using the invariance approach. Chapter I contains some special results regarding characteristic roots and vectors, and partitioned submatrices of real and complex matrices, as well as some special theorems on real and complex matrices useful in multivariate analysis. Chapter II deals with the theory of groups and related results that are useful for the development of invariant statistical test procedures, including the Jacobians of some specific transformations that are useful for deriving multivariate sampling distributions. Chapter III is devoted to basic notions of multivariate distributions and the principle of invariance in statistical testing of hypotheses. Chapters IV and V deal with the study of the real multivariate normal distribution through the probability density function and through a simple characterization and the maximum likelihood estimators of the parameters of the multivariate normal distribution and their optimum properties. Chapter VI tackles a systematic derivation of basic multivariate sampling distributions for the real case, while Chapter VII explores the tests and confidence regions of mean vectors of multivariate normal populations with known and unknown covariance matrices and their optimum properties. Chapter VIII is devoted to a systematic derivation of tests concerning covariance matrices and mean vectors of multivariate normal populations and to the study of their optimum properties. Chapters IX and X look into a treatment of discriminant analysis and the different covariance models and their analysis for the multivariate normal distribution. These chapters also deal with the principal components, factor models, canonical correlations, and time series. This book will prove useful to statisticians, mathematicians, and advance mathematics students.
Read More

Author: Vijay K. Rohatgi

Publisher: Courier Corporation

ISBN: 0486136213

Category: Mathematics

Page: 956

View: 2842

This treatment of probability and statistics examines discrete and continuous models, functions of random variables and random vectors, large-sample theory, more. Hundreds of problems (some with solutions). 1984 edition. Includes 144 figures and 35 tables.
Read More

Author: Jack C. Kiefer

Publisher: Springer Science & Business Media

ISBN: 146139578X

Category: Mathematics

Page: 334

View: 3100

This book is based upon lecture notes developed by Jack Kiefer for a course in statistical inference he taught at Cornell University. The notes were distributed to the class in lieu of a textbook, and the problems were used for homework assignments. Relying only on modest prerequisites of probability theory and cal culus, Kiefer's approach to a first course in statistics is to present the central ideas of the modem mathematical theory with a minimum of fuss and formality. He is able to do this by using a rich mixture of examples, pictures, and math ematical derivations to complement a clear and logical discussion of the important ideas in plain English. The straightforwardness of Kiefer's presentation is remarkable in view of the sophistication and depth of his examination of the major theme: How should an intelligent person formulate a statistical problem and choose a statistical procedure to apply to it? Kiefer's view, in the same spirit as Neyman and Wald, is that one should try to assess the consequences of a statistical choice in some quan titative (frequentist) formulation and ought to choose a course of action that is verifiably optimal (or nearly so) without regard to the perceived "attractiveness" of certain dogmas and methods.
Read More

Author: Nitis Mukhopadhyay

Publisher: CRC Press

ISBN: 9780824703790

Category: Mathematics

Page: 665

View: 3740

Priced very competitively compared with other textbooks at this level! This gracefully organized textbook reveals the rigorous theory of probability and statistical inference in the style of a tutorial, using worked examples, exercises, numerous figures and tables, and computer simulations to develop and illustrate concepts. Beginning with an introduction to the basic ideas and techniques in probability theory and progressing to more rigorous topics, Probability and Statistical Inference studies the Helmert transformation for normal distributions and the waiting time between failures for exponential distributions develops notions of convergence in probability and distribution spotlights the central limit theorem (CLT) for the sample variance introduces sampling distributions and the Cornish-Fisher expansions concentrates on the fundamentals of sufficiency, information, completeness, and ancillarity explains Basu's Theorem as well as location, scale, and location-scale families of distributions covers moment estimators, maximum likelihood estimators (MLE), Rao-Blackwellization, and the Cramér-Rao inequality discusses uniformly minimum variance unbiased estimators (UMVUE) and Lehmann-Scheffé Theorems focuses on the Neyman-Pearson theory of most powerful (MP) and uniformly most powerful (UMP) tests of hypotheses, as well as confidence intervals includes the likelihood ratio (LR) tests for the mean, variance, and correlation coefficient summarizes Bayesian methods describes the monotone likelihood ratio (MLR) property handles variance stabilizing transformations provides a historical context for statistics and statistical discoveries showcases great statisticians through biographical notes Employing over 1400 equations to reinforce its subject matter, Probability and Statistical Inference is a groundbreaking text for first-year graduate and upper-level undergraduate courses in probability and statistical inference who have completed a calculus prerequisite, as well as a supplemental text for classes in Advanced Statistical Inference or Decision Theory.
Read More

Author: Paul H. Garthwaite,I. T. Jolliffe,Byron Jones

Publisher: Oxford University Press on Demand

ISBN: 9780198572268

Category: Mathematics

Page: 328

View: 460

Statistical inference is the foundation on which much of statistical practice is built. This book covers the topic at a level suitable for students and professionals who need to understand these foundations.
Read More