An Introduction using R

Author: Michael J. Crawley

Publisher: John Wiley & Sons

ISBN: 9780470022986

Category: Mathematics

Page: 342

View: 8338

Computer software is an essential tool for many statistical modelling and data analysis techniques, aiding in the implementation of large data sets in order to obtain useful results. R is one of the most powerful and flexible statistical software packages available, and enables the user to apply a wide variety of statistical methods ranging from simple regression to generalized linear modelling. Statistics: An Introduction using R is a clear and concise introductory textbook to statistical analysis using this powerful and free software, and follows on from the success of the author's previous best-selling title Statistical Computing. * Features step-by-step instructions that assume no mathematics, statistics or programming background, helping the non-statistician to fully understand the methodology. * Uses a series of realistic examples, developing step-wise from the simplest cases, with the emphasis on checking the assumptions (e.g. constancy of variance and normality of errors) and the adequacy of the model chosen to fit the data. * The emphasis throughout is on estimation of effect sizes and confidence intervals, rather than on hypothesis testing. * Covers the full range of statistical techniques likely to be need to analyse the data from research projects, including elementary material like t-tests and chi-squared tests, intermediate methods like regression and analysis of variance, and more advanced techniques like generalized linear modelling. * Includes numerous worked examples and exercises within each chapter. * Accompanied by a website featuring worked examples, data sets, exercises and solutions: Statistics: An Introduction using R is the first text to offer such a concise introduction to a broad array of statistical methods, at a level that is elementary enough to appeal to a broad range of disciplines. It is primarily aimed at undergraduate students in medicine, engineering, economics and biology - but will also appeal to postgraduates who have not previously covered this area, or wish to switch to using R.
Read More

Author: Randall Pruim

Publisher: American Mathematical Soc.

ISBN: 1470428482

Category: Mathematical statistics

Page: 820

View: 3450

Foundations and Applications of Statistics simultaneously emphasizes both the foundational and the computational aspects of modern statistics. Engaging and accessible, this book is useful to undergraduate students with a wide range of backgrounds and career goals. The exposition immediately begins with statistics, presenting concepts and results from probability along the way. Hypothesis testing is introduced very early, and the motivation for several probability distributions comes from p-value computations. Pruim develops the students' practical statistical reasoning through explicit examples and through numerical and graphical summaries of data that allow intuitive inferences before introducing the formal machinery. The topics have been selected to reflect the current practice in statistics, where computation is an indispensible tool. In this vein, the statistical computing environment R is used throughout the text and is integral to the exposition. Attention is paid to developing students' mathematical and computational skills as well as their statistical reasoning. Linear models, such as regression and ANOVA, are treated with explicit reference to the underlying linear algebra, which is motivated geometrically. Foundations and Applications of Statistics discusses both the mathematical theory underlying statistics and practical applications that make it a powerful tool across disciplines. The book contains ample material for a two-semester course in undergraduate probability and statistics. A one-semester course based on the book will cover hypothesis testing and confidence intervals for the most common situations. In the second edition, the R code has been updated throughout to take advantage of new R packages and to illustrate better coding style. New sections have been added covering bootstrap methods, multinomial and multivariate normal distributions, the delta method, numerical methods for Bayesian inference, and nonlinear least squares. Also, the use of matrix algebra has been expanded, but remains optional, providing instructors with more options regarding the amount of linear algebra required.
Read More

Author: Michael J. Crawley

Publisher: John Wiley & Sons

ISBN: 9780470515068

Category: Mathematics

Page: 950

View: 2349

The high-level language of R is recognized as one of the most powerful and flexible statistical software environments, and is rapidly becoming the standard setting for quantitative analysis, statistics and graphics. R provides free access to unrivalled coverage and cutting-edge applications, enabling the user to apply numerous statistical methods ranging from simple regression to time series or multivariate analysis. Building on the success of the author’s bestselling Statistics: An Introduction using R, The R Book is packed with worked examples, providing an all inclusive guide to R, ideal for novice and more accomplished users alike. The book assumes no background in statistics or computing and introduces the advantages of the R environment, detailing its applications in a wide range of disciplines. Provides the first comprehensive reference manual for the R language, including practical guidance and full coverage of the graphics facilities. Introduces all the statistical models covered by R, beginning with simple classical tests such as chi-square and t-test. Proceeds to examine more advance methods, from regression and analysis of variance, through to generalized linear models, generalized mixed models, time series, spatial statistics, multivariate statistics and much more. The R Book is aimed at undergraduates, postgraduates and professionals in science, engineering and medicine. It is also ideal for students and professionals in statistics, economics, geography and the social sciences.
Read More

An Introduction with R

Author: Tenko Raykov,George A. Marcoulides

Publisher: Rowman & Littlefield

ISBN: 1442218460

Category: Education

Page: 331

View: 5964

Basic Statistics provides an accessible and comprehensive introduction to statistics using the free, state-of-the-art, powerful software program R. This book is designed to both introduce students to key concepts in statistics and to provide simple instructions for using R. This concise book: .Teaches essential concepts in statistics, assuming little background knowledge on the part of the reader .Introduces students to R with as few sub-commands as possible for ease of use .Provides practical examples from the educational, behavioral, and social sciences With clear explanations of statistical processes and step-by-step commands in R, Basic Statistics will appeal to students and professionals across the social and behavioral sciences."
Read More

Author: Andrie de Vries,Robert Leidenfrost

Publisher: John Wiley & Sons

ISBN: 3527812520

Category: Computers

Page: 414

View: 4848

Read More

Author: Joseph Adler

Publisher: O'Reilly Germany

ISBN: 3897216507

Category: Computers

Page: 768

View: 6389

Wozu sollte man R lernen? Da gibt es viele Gründe: Weil man damit natürlich ganz andere Möglichkeiten hat als mit einer Tabellenkalkulation wie Excel, aber auch mehr Spielraum als mit gängiger Statistiksoftware wie SPSS und SAS. Anders als bei diesen Programmen hat man nämlich direkten Zugriff auf dieselbe, vollwertige Programmiersprache, mit der die fertigen Analyse- und Visualisierungsmethoden realisiert sind – so lassen sich nahtlos eigene Algorithmen integrieren und komplexe Arbeitsabläufe realisieren. Und nicht zuletzt, weil R offen gegenüber beliebigen Datenquellen ist, von der einfachen Textdatei über binäre Fremdformate bis hin zu den ganz großen relationalen Datenbanken. Zudem ist R Open Source und erobert momentan von der universitären Welt aus die professionelle Statistik. R kann viel. Und Sie können viel mit R machen – wenn Sie wissen, wie es geht. Willkommen in der R-Welt: Installieren Sie R und stöbern Sie in Ihrem gut bestückten Werkzeugkasten: Sie haben eine Konsole und eine grafische Benutzeroberfläche, unzählige vordefinierte Analyse- und Visualisierungsoperationen – und Pakete, Pakete, Pakete. Für quasi jeden statistischen Anwendungsbereich können Sie sich aus dem reichen Schatz der R-Community bedienen. Sprechen Sie R! Sie müssen Syntax und Grammatik von R nicht lernen – wie im Auslandsurlaub kommen Sie auch hier gut mit ein paar aufgeschnappten Brocken aus. Aber es lohnt sich: Wenn Sie wissen, was es mit R-Objekten auf sich hat, wie Sie eigene Funktionen schreiben und Ihre eigenen Pakete schnüren, sind Sie bei der Analyse Ihrer Daten noch flexibler und effektiver. Datenanalyse und Statistik in der Praxis: Anhand unzähliger Beispiele aus Medizin, Wirtschaft, Sport und Bioinformatik lernen Sie, wie Sie Daten aufbereiten, mithilfe der Grafikfunktionen des lattice-Pakets darstellen, statistische Tests durchführen und Modelle anpassen. Danach werden Ihnen Ihre Daten nichts mehr verheimlichen.
Read More

An Introduction Using R, Second Edition

Author: Walter Zucchini,Iain L. MacDonald,Roland Langrock

Publisher: CRC Press

ISBN: 1482253844

Category: Mathematics

Page: 370

View: 6168

Hidden Markov Models for Time Series: An Introduction Using R, Second Edition illustrates the great flexibility of hidden Markov models (HMMs) as general-purpose models for time series data. The book provides a broad understanding of the models and their uses. After presenting the basic model formulation, the book covers estimation, forecasting, decoding, prediction, model selection, and Bayesian inference for HMMs. Through examples and applications, the authors describe how to extend and generalize the basic model so that it can be applied in a rich variety of situations. The book demonstrates how HMMs can be applied to a wide range of types of time series: continuous-valued, circular, multivariate, binary, bounded and unbounded counts, and categorical observations. It also discusses how to employ the freely available computing environment R to carry out the computations. Features Presents an accessible overview of HMMs Explores a variety of applications in ecology, finance, epidemiology, climatology, and sociology Includes numerous theoretical and programming exercises Provides most of the analysed data sets online New to the second edition A total of five chapters on extensions, including HMMs for longitudinal data, hidden semi-Markov models and models with continuous-valued state process New case studies on animal movement, rainfall occurrence and capture–recapture data
Read More

An Introduction to Statistics Through Biological Data

Author: Babak Shahbaba

Publisher: Springer Science & Business Media

ISBN: 1461413028

Category: Medical

Page: 352

View: 3327

Biostatistics with R is designed around the dynamic interplay among statistical methods, their applications in biology, and their implementation. The book explains basic statistical concepts with a simple yet rigorous language. The development of ideas is in the context of real applied problems, for which step-by-step instructions for using R and R-Commander are provided. Topics include data exploration, estimation, hypothesis testing, linear regression analysis, and clustering with two appendices on installing and using R and R-Commander. A novel feature of this book is an introduction to Bayesian analysis. This author discusses basic statistical analysis through a series of biological examples using R and R-Commander as computational tools. The book is ideal for instructors of basic statistics for biologists and other health scientists. The step-by-step application of statistical methods discussed in this book allows readers, who are interested in statistics and its application in biology, to use the book as a self-learning text.
Read More

Ordnung und Struktur in einer chaotischen Welt - Dieses Buch verändert Ihr Leben!

Author: Jordan B. Peterson

Publisher: Goldmann Verlag

ISBN: 3641239842

Category: Social Science

Page: 576

View: 423

Der Nr.1-Bestseller aus den USA: Wie man in einer von Chaos und Irrsinn regierten Welt bei Verstand bleibt! Wie können wir in der modernen Welt überleben? Jordan B. Peterson beantwortet diese Frage humorvoll, überraschend und informativ. Er erklärt, warum wir Kinder beim Skateboarden alleine lassen sollten, welches grausame Schicksal diejenigen ereilt, die alles allzu schnell kritisieren und warum wir Katzen, die wir auf der Straße antreffen, immer streicheln sollten. Doch was bitte erklärt uns das Nervensystem eines Hummers über unsere Erfolgschancen im Leben? Und warum beteten die alten Ägypter die Fähigkeit zu genauer Beobachtung als höchste Gottheit an? Dr. Peterson diskutiert Begriffe wie Disziplin, Freiheit, Abenteuer und Verantwortung und kondensiert Wahrheit und Weisheit der Welt in 12 praktischen Lebensregeln. »12 Rules For Life« erschüttert die Grundannahmen von moderner Wissenschaft, Glauben und menschlicher Natur. Dieses Buch verändert Ihr Leben garantiert!
Read More

An Introduction Using R

Author: Shailaja Rajendra Deshmukh

Publisher: Springer Science & Business Media

ISBN: 8132206592

Category: Business & Economics

Page: 220

View: 5595

​The book will serve as a guide to many actuarial concepts and statistical techniques in multiple decrement models and their application in calculation of premiums and reserves in life insurance products with riders and in pension and employee benefit plans as in these schemes, the benefit paid on termination of employment depends upon the several causes of termination. Multiple state models are discussed to accommodate the insurance products in which the payment of benefits or premiums is dependent on being in a given state or moving between a given pair of states at a given time, for example, disability income insurance model. The book also discusses stochastic models for interest rates and calculation of premiums for some products in this set up. The highlight of the book is usage of R software, freely available from public domain, for computations of various monetary functions involved in insurance business. R commands are given for all the computations.
Read More

Author: Allen B. Downey

Publisher: O'Reilly Germany

ISBN: 3868993436

Category: Computers

Page: 160

View: 321

Wenn Sie programmieren können, beherrschen Sie bereits Techniken, um aus Daten Wissen zu extrahieren. Diese kompakte Einführung in die Statistik zeigt Ihnen, wie Sie rechnergestützt, anstatt auf mathematischem Weg Datenanalysen mit Python durchführen können. Praktischer Programmier-Workshop statt grauer Theorie: Das Buch führt Sie anhand eines durchgängigen Fallbeispiels durch eine vollständige Datenanalyse -- von der Datensammlung über die Berechnung statistischer Kennwerte und Identifikation von Mustern bis hin zum Testen statistischer Hypothesen. Gleichzeitig werden Sie mit statistischen Verteilungen, den Regeln der Wahrscheinlichkeitsrechnung, Visualisierungsmöglichkeiten und vielen anderen Arbeitstechniken und Konzepten vertraut gemacht. Statistik-Konzepte zum Ausprobieren: Entwickeln Sie über das Schreiben und Testen von Code ein Verständnis für die Grundlagen von Wahrscheinlichkeitsrechnung und Statistik: Überprüfen Sie das Verhalten statistischer Merkmale durch Zufallsexperimente, zum Beispiel indem Sie Stichproben aus unterschiedlichen Verteilungen ziehen. Nutzen Sie Simulationen, um Konzepte zu verstehen, die auf mathematischem Weg nur schwer zugänglich sind. Lernen Sie etwas über Themen, die in Einführungen üblicherweise nicht vermittelt werden, beispielsweise über die Bayessche Schätzung. Nutzen Sie Python zur Bereinigung und Aufbereitung von Rohdaten aus nahezu beliebigen Quellen. Beantworten Sie mit den Mitteln der Inferenzstatistik Fragestellungen zu realen Daten.
Read More

An Introduction to Using R Commander

Author: Graeme Hutcheson

Publisher: N.A

ISBN: 9781446200612


Page: 276

View: 7416

In this clear and practical text, Graeme Hutcheson, introduces the basics of data analysis using R, and its graphical user interface, R Commander (Rcmdr) to those who have never used the package before. This book takes a hands-on, non-mathematical approach that recognizes that most students and new researchers find using statistics for the first time a daunting and difficult task. Using screenshots and lots of easy-to-understand examples, and drawing on an extensive set of resources on a companion website, Hutcheson works through the basic tasks of data analysis. He provides readers with a 'system of analysis' that they can apply to their own data in a way that is easy to understand and put into operation so that they can get started with their own analysis quickly. This book deals with data, descriptive statistics, data analysis, model diagnostics and graphics and provides a comprehensive illustration of many of the techniques that form the basis of introductory statistics courses. Graeme Hutcheson has succeeded in making basic data analysis easy to understand and this book will be essential reading for anyone wanting to use R to analyze their data.
Read More

Author: Torsten Hothorn,Brian S. Everitt

Publisher: CRC Press

ISBN: 1482204592

Category: Mathematics

Page: 456

View: 9913

Like the best-selling first two editions, A Handbook of Statistical Analyses using R, Third Edition provides an up-to-date guide to data analysis using the R system for statistical computing. The book explains how to conduct a range of statistical analyses, from simple inference to recursive partitioning to cluster analysis. New to the Third Edition Three new chapters on quantile regression, missing values, and Bayesian inference Extra material in the logistic regression chapter that describes a regression model for ordered categorical response variables Additional exercises More detailed explanations of R code New section in each chapter summarizing the results of the analyses Updated version of the HSAUR package (HSAUR3), which includes some slides that can be used in introductory statistics courses Whether you’re a data analyst, scientist, or student, this handbook shows you how to easily use R to effectively evaluate your data. With numerous real-world examples, it emphasizes the practical application and interpretation of results.
Read More

Author: Margot Lee Shetterly

Publisher: HarperCollins

ISBN: 3959676433

Category: History

Page: 416

View: 1986

1943 stellt das Langley Memorial Aeronautical Laboratory der NACA,die später zur NASA wird, erstmalig afroamerikanische Frauen ein. "Menschliche Rechner" - unter ihnen Dorothy Vaughan, die 1953 Vorgesetzte der brillanten afroamerikanischen Mathematikerin Katherine Johnson wird. Trotz Diskriminierung und Vorurteilen, treiben sie die Forschungen der NASA voran und Katherine Johnsons Berechnungen werden maßgeblich für den Erfolg der Apollo-Missionen. Dies ist ihre Geschichte. "Mit dieser unglaublich mitreißenden und vielschichtigen Erzählung zeigt Shetterly ihr Können. Die Geschichte begeistert in allen Aspekten." Booklist
Read More

An Introduction to Data Analysis using S-Plus

Author: Michael J. Crawley

Publisher: Wiley

ISBN: 9780471560401

Category: Computers

Page: 772

View: 9090

Many statistical modelling and data analysis techniques can be difficult to grasp and apply, and it is often necessary to use computer software to aid the implementation of large data sets and to obtain useful results. S-Plus is recognised as one of the most powerful and flexible statistical software packages, and it enables the user to apply a number of statistical methods, ranging from simple regression to time series or multivariate analysis. This text offers extensive coverage of many basic and more advanced statistical methods, concentrating on graphical inspection, and features step-by-step instructions to help the non-statistician to understand fully the methodology. * Extensive coverage of basic, intermediate and advanced statistical methods * Uses S-Plus, which is recognised globally as one of the most powerful and flexible statistical software packages * Emphasis is on graphical data inspection, parameter estimation and model criticism * Features hundreds of worked examples to illustrate the techniques described * Accessible to scientists from a large number of disciplines with minimal statistical knowledge * Written by a leading figure in the field, who runs a number of successful international short courses * Accompanied by a Web site featuring worked examples, data sets, exercises and solutions A valuable reference resource for researchers, professionals, lecturers and students from statistics, the life sciences, medicine, engineering, economics and the social sciences.
Read More

Author: Uwe Ligges

Publisher: Springer-Verlag

ISBN: 3540799982

Category: Computers

Page: 251

View: 6282

R ist eine objektorientierte und interpretierte Sprache und Programmierumgebung für Datenanalyse und Grafik. Ausführlich führt der Autor in die Grundlagen ein und vermittelt eingängig die Struktur der Sprache. So ermöglicht er Lesern den leichten Einstieg: eigene Methoden umsetzen, Objektklassen definieren und Pakete aus Funktionen und zugehöriger Dokumentation zusammenstellen. Detailliert beschreibt er die enormen Grafikfähigkeiten von R. Für alle, die R als flexibles Werkzeug zur Datenanalyse und -visualisierung einsetzen. In 2. Auflage mit vielen Verbesserungen und Neuerungen von R-2.3.x und weiteren von Lesern gewünschten Ergänzungen.
Read More

Author: CTI Reviews

Publisher: Cram101 Textbook Reviews

ISBN: 146727481X

Category: Education

Page: 69

View: 6407

Facts101 is your complete guide to Social Statistics, An Introduction Using SPSS. In this book, you will learn topics such as Analyzing Frequency Distributions, Measures of Central Tendency, Measures of Dispersion, and An Introduction to Making Inferences plus much more. With key features such as key terms, people and places, Facts101 gives you all the information you need to prepare for your next exam. Our practice tests are specific to the textbook and we have designed tools to make the most of your limited study time.
Read More