Author: Alex Graves

Publisher: Springer Science & Business Media

ISBN: 3642247962

Category: Computers

Page: 146

View: 2150

Supervised sequence labelling is a vital area of machine learning, encompassing tasks such as speech, handwriting and gesture recognition, protein secondary structure prediction and part-of-speech tagging. Recurrent neural networks are powerful sequence learning tools—robust to input noise and distortion, able to exploit long-range contextual information—that would seem ideally suited to such problems. However their role in large-scale sequence labelling systems has so far been auxiliary. The goal of this book is a complete framework for classifying and transcribing sequential data with recurrent neural networks only. Three main innovations are introduced in order to realise this goal. Firstly, the connectionist temporal classification output layer allows the framework to be trained with unsegmented target sequences, such as phoneme-level speech transcriptions; this is in contrast to previous connectionist approaches, which were dependent on error-prone prior segmentation. Secondly, multidimensional recurrent neural networks extend the framework in a natural way to data with more than one spatio-temporal dimension, such as images and videos. Thirdly, the use of hierarchical subsampling makes it feasible to apply the framework to very large or high resolution sequences, such as raw audio or video. Experimental validation is provided by state-of-the-art results in speech and handwriting recognition.
Read More

Author: Alex Graves

Publisher: Springer

ISBN: 3642247970

Category: Computers

Page: 146

View: 9572

Supervised sequence labelling is a vital area of machine learning, encompassing tasks such as speech, handwriting and gesture recognition, protein secondary structure prediction and part-of-speech tagging. Recurrent neural networks are powerful sequence learning tools—robust to input noise and distortion, able to exploit long-range contextual information—that would seem ideally suited to such problems. However their role in large-scale sequence labelling systems has so far been auxiliary. The goal of this book is a complete framework for classifying and transcribing sequential data with recurrent neural networks only. Three main innovations are introduced in order to realise this goal. Firstly, the connectionist temporal classification output layer allows the framework to be trained with unsegmented target sequences, such as phoneme-level speech transcriptions; this is in contrast to previous connectionist approaches, which were dependent on error-prone prior segmentation. Secondly, multidimensional recurrent neural networks extend the framework in a natural way to data with more than one spatio-temporal dimension, such as images and videos. Thirdly, the use of hierarchical subsampling makes it feasible to apply the framework to very large or high resolution sequences, such as raw audio or video. Experimental validation is provided by state-of-the-art results in speech and handwriting recognition.
Read More

Author: Alex Graves

Publisher: Springer

ISBN: 9783642432187

Category: Computers

Page: 146

View: 4217

Supervised sequence labelling is a vital area of machine learning, encompassing tasks such as speech, handwriting and gesture recognition, protein secondary structure prediction and part-of-speech tagging. Recurrent neural networks are powerful sequence learning tools—robust to input noise and distortion, able to exploit long-range contextual information—that would seem ideally suited to such problems. However their role in large-scale sequence labelling systems has so far been auxiliary. The goal of this book is a complete framework for classifying and transcribing sequential data with recurrent neural networks only. Three main innovations are introduced in order to realise this goal. Firstly, the connectionist temporal classification output layer allows the framework to be trained with unsegmented target sequences, such as phoneme-level speech transcriptions; this is in contrast to previous connectionist approaches, which were dependent on error-prone prior segmentation. Secondly, multidimensional recurrent neural networks extend the framework in a natural way to data with more than one spatio-temporal dimension, such as images and videos. Thirdly, the use of hierarchical subsampling makes it feasible to apply the framework to very large or high resolution sequences, such as raw audio or video. Experimental validation is provided by state-of-the-art results in speech and handwriting recognition.
Read More

Learning Algorithms, Architectures and Stability

Author: Danilo P. Mandic,Jonathon Chambers

Publisher: John Wiley & Sons Incorporated

ISBN: 9780471495178

Category: Computers

Page: 285

View: 5191

New technologies in engineering, physics and biomedicine are demanding increasingly complex methods of digital signal processing. By presenting the latest research work the authors demonstrate how real-time recurrent neural networks (RNNs) can be implemented to expand the range of traditional signal processing techniques and to help combat the problem of prediction. Within this text neural networks are considered as massively interconnected nonlinear adaptive filters. ? Analyses the relationships between RNNs and various nonlinear models and filters, and introduces spatio-temporal architectures together with the concepts of modularity and nesting ? Examines stability and relaxation within RNNs ? Presents on-line learning algorithms for nonlinear adaptive filters and introduces new paradigms which exploit the concepts of a priori and a posteriori errors, data-reusing adaptation, and normalisation ? Studies convergence and stability of on-line learning algorithms based upon optimisation techniques such as contraction mapping and fixed point iteration ? Describes strategies for the exploitation of inherent relationships between parameters in RNNs ? Discusses practical issues such as predictability and nonlinearity detecting and includes several practical applications in areas such as air pollutant modelling and prediction, attractor discovery and chaos, ECG signal processing, and speech processing Recurrent Neural Networks for Prediction offers a new insight into the learning algorithms, architectures and stability of recurrent neural networks and, consequently, will have instant appeal. It provides an extensive background for researchers, academics and postgraduates enabling them to apply such networks in new applications. VISIT OUR COMMUNICATIONS TECHNOLOGY WEBSITE! http://www.wiley.co.uk/commstech/ VISIT OUR WEB PAGE! http://www.wiley.co.uk/
Read More

Author: Marek R. Ogiela,Lakhmi C. Jain

Publisher: Springer Science & Business Media

ISBN: 3642240488

Category: Computers

Page: 200

View: 8821

This monograph presents selected areas of application of pattern recognition and classification approaches including handwriting recognition, medical image analysis and interpretation, development of cognitive systems for image computer understanding, moving object detection, advanced image filtration and intelligent multi-object labelling and classification. It is directed to the scientists, application engineers, professors, professors and students will find this book useful.
Read More

Author: Yoshua Bengio

Publisher: Now Publishers Inc

ISBN: 1601982941

Category: Computers

Page: 131

View: 5592

Theoretical results suggest that in order to learn the kind of complicated functions that can represent high-level abstractions (e.g. in vision, language, and other AI-level tasks), one may need deep architectures. Deep architectures are composed of multiple levels of non-linear operations, such as in neural nets with many hidden layers or in complicated propositional formulae re-using many sub-formulae. Searching the parameter space of deep architectures is a difficult task, but learning algorithms such as those for Deep Belief Networks have recently been proposed to tackle this problem with notable success, beating the state-of-the-art in certain areas. This paper discusses the motivations and principles regarding learning algorithms for deep architectures, in particular those exploiting as building blocks unsupervised learning of single-layer models such as Restricted Boltzmann Machines, used to construct deeper models such as Deep Belief Networks.
Read More

16th International Conference, ICAISC 2017, Zakopane, Poland, June 11-15, 2017, Proceedings

Author: Leszek Rutkowski,Marcin Korytkowski,Rafał Scherer,Ryszard Tadeusiewicz,Lotfi A. Zadeh,Jacek M. Zurada

Publisher: Springer

ISBN: 3319590634

Category: Computers

Page: 776

View: 3168

The two-volume set LNAI 10245 and LNAI 10246 constitutes the refereed proceedings of the 16th International Conference on Artificial Intelligence and Soft Computing, ICAISC 2017, held in Zakopane, Poland in June 2017. The 133 revised full papers presented were carefully reviewed and selected from 274 submissions. The papers included in the first volume are organized in the following five parts: neural networks and their applications; fuzzy systems and their applications; evolutionary algorithms and their applications; computer vision, image and speech analysis; and bioinformatics, biometrics and medical applications.
Read More

A Practical Course

Author: Ivan Nunes da Silva,Danilo Hernane Spatti,Rogerio Andrade Flauzino,Luisa Helena Bartocci Liboni,Silas Franco dos Reis Alves

Publisher: Springer

ISBN: 3319431625

Category: Technology & Engineering

Page: 307

View: 2033

This book provides comprehensive coverage of neural networks, their evolution, their structure, the problems they can solve, and their applications. The first half of the book looks at theoretical investigations on artificial neural networks and addresses the key architectures that are capable of implementation in various application scenarios. The second half is designed specifically for the production of solutions using artificial neural networks to solve practical problems arising from different areas of knowledge. It also describes the various implementation details that were taken into account to achieve the reported results. These aspects contribute to the maturation and improvement of experimental techniques to specify the neural network architecture that is most appropriate for a particular application scope. The book is appropriate for students in graduate and upper undergraduate courses in addition to researchers and professionals.
Read More

From Theory to Algorithms

Author: Shai Shalev-Shwartz,Shai Ben-David

Publisher: Cambridge University Press

ISBN: 1107057132

Category: Computers

Page: 409

View: 7489

Introduces machine learning and its algorithmic paradigms, explaining the principles behind automated learning approaches and the considerations underlying their usage.
Read More

Author: Witold Pedrycz,Shyi-Ming Chen

Publisher: Springer

ISBN: 3319896296

Category: Computers

Page: 428

View: 3878

The book presents a comprehensive and up-to-date review of fuzzy pattern recognition. It carefully discusses a range of methodological and algorithmic issues, as well as implementations and case studies, and identifies the best design practices, assesses business models and practices of pattern recognition in real-world applications in industry, health care, administration, and business. Since the inception of fuzzy sets, fuzzy pattern recognition with its methodology, algorithms, and applications, has offered new insights into the principles and practice of pattern classification. Computational intelligence (CI) establishes a comprehensive framework aimed at fostering the paradigm of pattern recognition. The collection of contributions included in this book offers a representative overview of the advances in the area, with timely, in-depth and comprehensive material on the conceptually appealing and practically sound methodology and practices of CI-based pattern recognition.
Read More

Author: Barbara Hammer

Publisher: Springer

ISBN: 1846285674

Category: Technology & Engineering

Page: 150

View: 8450

Folding networks, a generalisation of recurrent neural networks to tree structured inputs, are investigated as a mechanism to learn regularities on classical symbolic data, for example. The architecture, the training mechanism, and several applications in different areas are explained. Afterwards a theoretical foundation, proving that the approach is appropriate as a learning mechanism in principle, is presented: Their universal approximation ability is investigated- including several new results for standard recurrent neural networks such as explicit bounds on the required number of neurons and the super Turing capability of sigmoidal recurrent networks. The information theoretical learnability is examined - including several contribution to distribution dependent learnability, an answer to an open question posed by Vidyasagar, and a generalisation of the recent luckiness framework to function classes. Finally, the complexity of training is considered - including new results on the loading problem for standard feedforward networks with an arbitrary multilayered architecture, a correlated number of neurons and training set size, a varying number of hidden neurons but fixed input dimension, or the sigmoidal activation function, respectively.
Read More

Systems for Extracting Semantic Information from Speech

Author: Gokhan Tur,Renato De Mori

Publisher: John Wiley & Sons

ISBN: 1119993946

Category: Language Arts & Disciplines

Page: 480

View: 6088

Spoken language understanding (SLU) is an emerging field in between speech and language processing, investigating human/ machine and human/ human communication by leveraging technologies from signal processing, pattern recognition, machine learning and artificial intelligence. SLU systems are designed to extract the meaning from speech utterances and its applications are vast, from voice search in mobile devices to meeting summarization, attracting interest from both commercial and academic sectors. Both human/machine and human/human communications can benefit from the application of SLU, using differing tasks and approaches to better understand and utilize such communications. This book covers the state-of-the-art approaches for the most popular SLU tasks with chapters written by well-known researchers in the respective fields. Key features include: Presents a fully integrated view of the two distinct disciplines of speech processing and language processing for SLU tasks. Defines what is possible today for SLU as an enabling technology for enterprise (e.g., customer care centers or company meetings), and consumer (e.g., entertainment, mobile, car, robot, or smart environments) applications and outlines the key research areas. Provides a unique source of distilled information on methods for computer modeling of semantic information in human/machine and human/human conversations. This book can be successfully used for graduate courses in electronics engineering, computer science or computational linguistics. Moreover, technologists interested in processing spoken communications will find it a useful source of collated information of the topic drawn from the two distinct disciplines of speech processing and language processing under the new area of SLU.
Read More

Author: Francois Chollet

Publisher: Manning Publications

ISBN: 9781617294433

Category: Machine learning

Page: 384

View: 6300

Summary Deep Learning with Python introduces the field of deep learning using the Python language and the powerful Keras library. Written by Keras creator and Google AI researcher Fran�ois Chollet, this book builds your understanding through intuitive explanations and practical examples. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Machine learning has made remarkable progress in recent years. We went from near-unusable speech and image recognition, to near-human accuracy. We went from machines that couldn't beat a serious Go player, to defeating a world champion. Behind this progress is deep learning--a combination of engineering advances, best practices, and theory that enables a wealth of previously impossible smart applications. About the Book Deep Learning with Python introduces the field of deep learning using the Python language and the powerful Keras library. Written by Keras creator and Google AI researcher Fran�ois Chollet, this book builds your understanding through intuitive explanations and practical examples. You'll explore challenging concepts and practice with applications in computer vision, natural-language processing, and generative models. By the time you finish, you'll have the knowledge and hands-on skills to apply deep learning in your own projects. What's Inside Deep learning from first principles Setting up your own deep-learning environment Image-classification models Deep learning for text and sequences Neural style transfer, text generation, and image generation About the Reader Readers need intermediate Python skills. No previous experience with Keras, TensorFlow, or machine learning is required. About the Author Fran�ois Chollet works on deep learning at Google in Mountain View, CA. He is the creator of the Keras deep-learning library, as well as a contributor to the TensorFlow machine-learning framework. He also does deep-learning research, with a focus on computer vision and the application of machine learning to formal reasoning. His papers have been published at major conferences in the field, including the Conference on Computer Vision and Pattern Recognition (CVPR), the Conference and Workshop on Neural Information Processing Systems (NIPS), the International Conference on Learning Representations (ICLR), and others. Table of Contents PART 1 - FUNDAMENTALS OF DEEP LEARNING What is deep learning? Before we begin: the mathematical building blocks of neural networks Getting started with neural networks Fundamentals of machine learning PART 2 - DEEP LEARNING IN PRACTICE Deep learning for computer vision Deep learning for text and sequences Advanced deep-learning best practices Generative deep learning Conclusions appendix A - Installing Keras and its dependencies on Ubuntu appendix B - Running Jupyter notebooks on an EC2 GPU instance
Read More

Author: Martin Hagan,Howard Demuth,Mark Beale,Orlando De Jesus

Publisher: N.A

ISBN: 9780971732117

Category:

Page: 800

View: 3253

This book provides a clear and detailed coverage of fundamental neural network architectures and learning rules. In it, the authors emphasize a coherent presentation of the principal neural networks, methods for training them and their applications to practical problems.
Read More

Author: Mrinal Kaushik,Prashanth Reddy Hanmaiahgari

Publisher: Springer

ISBN: 9811023778

Category: Technology & Engineering

Page: 63

View: 557

This book aims to provide a complete exposure about armaments from their design to launch from the combat aircraft. The book details modern ammunition and their tactical roles in warfare. The proposed book discusses aerodynamics, propulsion, structural as well as navigation, control, and guidance of aircraft armament. It also introduces the various types of ammunition developed by different countries and their changing trends. The book imparts knowledge in the field of design, and development of aircraft armaments to aerospace engineers and covers the role of the United Nations in peacekeeping and disarmament. The book will be very useful to researchers, students, and professionals working in design and manufacturing of aircraft armaments. The book will also serve air force and naval aspirants, and those interested in working on defence research and developments organizations.
Read More

Author: John F. Kolen,Stefan C. Kremer

Publisher: John Wiley & Sons

ISBN: 9780780353695

Category: Computers

Page: 421

View: 1163

Electrical Engineering A Field Guide to Dynamical Recurrent Networks Acquire the tools for understanding new architectures and algorithms of dynamical recurrent networks (DRNs) from this valuable field guide, which documents recent forays into artificial intelligence, control theory, and connectionism. This unbiased introduction to DRNs and their application to time-series problems (such as classification and prediction) provides a comprehensive overview of the recent explosion of leading research in this prolific field. A Field Guide to Dynamical Recurrent Networks emphasizes the issues driving the development of this class of network structures. It provides a solid foundation in DRN systems theory and practice using consistent notation and terminology. Theoretical presentations are supplemented with applications ranging from cognitive modeling to financial forecasting. A Field Guide to Dynamical Recurrent Networks will enable engineers, research scientists, academics, and graduate students to apply DRNs to various real-world problems and learn about different areas of active research. It provides both state-of-the-art information and a road map to the future of cutting-edge dynamical recurrent networks.
Read More

A Comprehensive Foundation

Author: Simon Haykin

Publisher: IEEE

ISBN: 9780780334946

Category: Computers

Page: 700

View: 949

Read More

Proceedings of the 23rd Workshop of the Italian Neural Networks Society (SIREN), May 23-25, Vietri sul Mare, Salerno, Italy

Author: Simone Bassis,Anna Esposito,Francesco Carlo Morabito

Publisher: Springer Science & Business Media

ISBN: 3319041290

Category: Computers

Page: 446

View: 3112

This volume collects a selection of contributions which has been presented at the 23rd Italian Workshop on Neural Networks, the yearly meeting of the Italian Society for Neural Networks (SIREN). The conference was held in Vietri sul Mare, Salerno, Italy during May 23-24, 2013. The annual meeting of SIREN is sponsored by International Neural Network Society (INNS), European Neural Network Society (ENNS) and IEEE Computational Intelligence Society (CIS). The book – as well as the workshop- is organized in two main components, a special session and a group of regular sessions featuring different aspects and point of views of artificial neural networks, artificial and natural intelligence, as well as psychological and cognitive theories for modeling human behaviors and human machine interactions, including Information Communication applications of compelling interest.
Read More

Author: Yoav Goldberg

Publisher: Morgan & Claypool Publishers

ISBN: 162705295X

Category: Computers

Page: 309

View: 8424

Neural networks are a family of powerful machine learning models. This book focuses on the application of neural network models to natural language data. The first half of the book (Parts I and II) covers the basics of supervised machine learning and feed-forward neural networks, the basics of working with machine learning over language data, and the use of vector-based rather than symbolic representations for words. It also covers the computation-graph abstraction, which allows to easily define and train arbitrary neural networks, and is the basis behind the design of contemporary neural network software libraries. The second part of the book (Parts III and IV) introduces more specialized neural network architectures, including 1D convolutional neural networks, recurrent neural networks, conditioned-generation models, and attention-based models. These architectures and techniques are the driving force behind state-of-the-art algorithms for machine translation, syntactic parsing, and many other applications. Finally, we also discuss tree-shaped networks, structured prediction, and the prospects of multi-task learning.
Read More

Real Word AI Systems with Applications in EHealth, HCI, Information Retrieval and Pervasive Technologies

Author: Ilias G. Maglogiannis

Publisher: IOS Press

ISBN: 1586037803

Category: Computers

Page: 407

View: 8351

"The ever expanding abundance of information and computing power enables researchers and users to tackle highly interesting issues for the first time, such as applications providing personalized access and interactivity to multimodal information based on user preferences and semantic concepts or human-machine interface systems utilizing information on the affective state of the user. The purpose of this book is to provide insights on how todays computer engineers can implement AI in real world applications. Overall, the field of artificial intelligence is extremely broad. In essence, AI has found applications, in one way or another, in every aspect of computing and in most aspects of modern life. Consequently, it is not possible to provide a complete review of the field in the framework of a single book, unless if the review is broad rather than deep. In this book we have chosen to present selected current and emerging practical applications of AI, thus allowing for a more detailed presentation of topics. The book is organized in four parts; General Purpose Applications of AI; Intelligent Human-Computer Interaction; Intelligent Applications in Signal Processing and eHealth; and Real world AI applications in Computer Engineering."
Read More