Author: Hans Ringström

Publisher: European Mathematical Society

ISBN: 9783037190531

Category: Mathematics

Page: 294

View: 6342

"The general theory of relativity is a theory of manifolds equipped with Lorentz metrics and fields which describe the matter content. Einstein's equations equate the Einstein tensor (a curvature quantity associated with the Lorentz metric) with the stress energy tensor (an object constructed using the matter fields). In addition, there are equations describing the evolution of the matter. Using symmetry as a guiding principle, one is naturally led to the Schwarzschild and Friedmann-Lemaãitre-Robertson-Walker solutions, modelling an isolated system and the entire universe respectively. In a different approach, formulating Einstein's equations as an initial value problem allows a closer study of their solutions. This book first provides a definition of the concept of initial data and a proof of the correspondence between initial data and development. It turns out that some initial data allow non-isometric maximal developments, complicating the uniqueness issue. The second half of the book is concerned with this and related problems, such as strong cosmic censorship. The book presents complete proofs of several classical results that play a central role in mathematical relativity but are not easily accessible to those wishing to enter the subject. Prerequisites are a good knowledge of basic measure and integration theory as well as the fundamentals of Lorentz geometry. The necessary background from the theory of partial differential equations and Lorentz geometry is included."--Publisher's description.
Read More

50 Years of the Cauchy Problem in General Relativity

Author: Piotr T. Chrusciel,Helmut Friedrich

Publisher: Birkhäuser

ISBN: 3034879539

Category: Science

Page: 485

View: 8968

The book presents state-of-the-art results on the analysis of the Einstein equations and the large scale structure of their solutions. It combines in a unique way introductory chapters and surveys of various aspects of the analysis of the Einstein equations in the large. It discusses applications of the Einstein equations in geometrical studies and the physical interpretation of their solutions. Open problems concerning analytical and numerical aspects of the Einstein equations are pointed out. Background material on techniques in PDE theory, differential geometry, and causal theory is provided.
Read More

Author: Jean Eisenstaedt,A.J. Kox

Publisher: Springer Science & Business Media

ISBN: 9780817634797

Category: Science

Page: 468

View: 408

Among the considerations of the two dozen papers are the reception and development of Einstein's theory of general relativity in various institutions around the world; conceptual issues of the theory, especially themes, concepts, and principles associated with his theory of gravity; a number of tech
Read More

Author: Robert T. Glassey

Publisher: SIAM

ISBN: 0898713676

Category: Science

Page: 241

View: 360

Studies the basic equations of kinetic theory in all of space, and contains up-to-date, state-of-the-art treatments of initial-value problems for the major kinetic equations. This is the only existing book to treat Boltzmann-type problems and Vlasov-type problems together. Although describing very different phenomena, these equations share the same streaming term.
Read More

Author: Yvonne Choquet-Bruhat

Publisher: Oxford University Press

ISBN: 0199230722

Category: Mathematics

Page: 785

View: 1747

General Relativity has passed all experimental and observational tests to model the motion of isolated bodies with strong gravitational fields, though the mathematical and numerical study of these motions is still in its infancy. It is believed that General Relativity models our cosmos, with a manifold of dimensions possibly greater than four and debatable topology opening a vast field of investigation for mathematicians and physicists alike. Remarkable conjectures have been proposed, many results have been obtained but many fundamental questions remain open. In this monograph, aimed at researchers in mathematics and physics, the author overviews the basic ideas in General Relativity, introduces the necessary mathematics and discusses some of the key open questions in the field.
Read More

Author: Stephen Paul Braham,Jack David Gegenberg,Robert James McKellar

Publisher: American Mathematical Soc.

ISBN: 9780821885888

Category: Science

Page: 373

View: 9424

This volume is the refereed proceedings of the Sixth Canadian Conference on General Relativity and Relativistic Astrophysics held in May 1995 at the University of New Brunswick. The book includes invited talks and contributed talks and posters including state-of-the art reviews of many of the most recent important developments in gravitational physics. This book would serve as a good supplement to standard texts on the topic. Features: * Review articles in key areas: black holes, numerical relativity, etc. * Contributions covering most of gravitational physics * Useful articles for students who wish to begin exploring the issues discusses * Invited talks given by researchers known for their ability to communicate their expertise
Read More

Bases of Numerical Relativity

Author: Éric Gourgoulhon

Publisher: Springer Science & Business Media

ISBN: 3642245242

Category: Science

Page: 294

View: 9456

This graduate-level, course-based text is devoted to the 3+1 formalism of general relativity, which also constitutes the theoretical foundations of numerical relativity. The book starts by establishing the mathematical background (differential geometry, hypersurfaces embedded in space-time, foliation of space-time by a family of space-like hypersurfaces), and then turns to the 3+1 decomposition of the Einstein equations, giving rise to the Cauchy problem with constraints, which constitutes the core of 3+1 formalism. The ADM Hamiltonian formulation of general relativity is also introduced at this stage. Finally, the decomposition of the matter and electromagnetic field equations is presented, focusing on the astrophysically relevant cases of a perfect fluid and a perfect conductor (ideal magnetohydrodynamics). The second part of the book introduces more advanced topics: the conformal transformation of the 3-metric on each hypersurface and the corresponding rewriting of the 3+1 Einstein equations, the Isenberg-Wilson-Mathews approximation to general relativity, global quantities associated with asymptotic flatness (ADM mass, linear and angular momentum) and with symmetries (Komar mass and angular momentum). In the last part, the initial data problem is studied, the choice of spacetime coordinates within the 3+1 framework is discussed and various schemes for the time integration of the 3+1 Einstein equations are reviewed. The prerequisites are those of a basic general relativity course with calculations and derivations presented in detail, making this text complete and self-contained. Numerical techniques are not covered in this book.
Read More

Author: S. W. Hawking,G. F. R. Ellis

Publisher: Cambridge University Press

ISBN: 1139810952

Category: Science

Page: N.A

View: 9365

Einstein's General Theory of Relativity leads to two remarkable predictions: first, that the ultimate destiny of many massive stars is to undergo gravitational collapse and to disappear from view, leaving behind a 'black hole' in space; and secondly, that there will exist singularities in space-time itself. These singularities are places where space-time begins or ends, and the presently known laws of physics break down. They will occur inside black holes, and in the past are what might be construed as the beginning of the universe. To show how these predictions arise, the authors discuss the General Theory of Relativity in the large. Starting with a precise formulation of the theory and an account of the necessary background of differential geometry, the significance of space-time curvature is discussed and the global properties of a number of exact solutions of Einstein's field equations are examined. The theory of the causal structure of a general space-time is developed, and is used to study black holes and to prove a number of theorems establishing the inevitability of singualarities under certain conditions. A discussion of the Cauchy problem for General Relativity is also included in this 1973 book.
Read More

Selected Essays in Honour of Jürgen Ehlers

Author: Bernd G. Schmidt

Publisher: Springer

ISBN: 3540465804

Category: Mathematics

Page: 433

View: 4500

This book serves two purposes. The authors present important aspects of modern research on the mathematical structure of Einstein's field equations and they show how to extract their physical content from them by mathematically exact methods. The essays are devoted to exact solutions and to the Cauchy problem of the field equations as well as to post-Newtonian approximations that have direct physical implications. Further topics concern quantum gravity and optics in gravitational fields. The book addresses researchers in relativity and differential geometry but can also be used as additional reading material for graduate students.
Read More

Proceedings of the International Colloquium in honour of Yvonne Choquet-Bruhat, Paris, June 3–5, 1992

Author: M. Flato,R. Kerner,A. Lichnerowicz

Publisher: Springer Science & Business Media

ISBN: 9401119384

Category: Mathematics

Page: 366

View: 2511

This volume contains the proceedings of the Colloquium "Analysis, Manifolds and Physics" organized in honour of Yvonne Choquet-Bruhat by her friends, collaborators and former students, on June 3, 4 and 5, 1992 in Paris. Its title accurately reflects the domains to which Yvonne Choquet-Bruhat has made essential contributions. Since the rise of General Relativity, the geometry of Manifolds has become a non-trivial part of space-time physics. At the same time, Functional Analysis has been of enormous importance in Quantum Mechanics, and Quantum Field Theory. Its role becomes decisive when one considers the global behaviour of solutions of differential systems on manifolds. In this sense, General Relativity is an exceptional theory in which the solutions of a highly non-linear system of partial differential equations define by themselves the very manifold on which they are supposed to exist. This is why a solution of Einstein's equations cannot be physically interpreted before its global behaviour is known, taking into account the entire hypothetical underlying manifold. In her youth, Yvonne Choquet-Bruhat contributed in a spectacular way to this domain stretching between physics and mathematics, when she gave the proof of the existence of solutions to Einstein's equations on differential manifolds of a quite general type. The methods she created have been worked out by the French school of mathematics, principally by Jean Leray. Her first proof of the local existence and uniqueness of solutions of Einstein's equations inspired Jean Leray's theory of general hyperbolic systems.
Read More

Author: Craig Callender

Publisher: OUP Oxford

ISBN: 0191559385

Category: Science

Page: 704

View: 3005

As the study of time has flourished in the physical and human sciences, the philosophy of time has come into its own as a lively and diverse area of academic research. Philosophers investigate not just the metaphysics of time, and our experience and representation of time, but the role of time in ethics and action, and philosophical issues in the sciences of time, especially with regard to quantum mechanics and relativity theory. This Handbook presents twenty-three specially written essays by leading figures in their fields: it is the first comprehensive collaborative study of the philosophy of time, and will set the agenda for future work.
Read More

Proceedings of the Conference on Classical (Non-Quantum) General Relativity, City University, London, 21-22 December 1983

Author: W. B. Bonnor,Jamal Nazrul Islam

Publisher: CUP Archive

ISBN: 9780521267472

Category: Science

Page: 269

View: 8694

This volume is made up of papers presented at the Conference on Classical General Relativity held at the City University, London, in December 1983. New tests, arising from space experimentation, pulsars and black holes have revitalised the study of Einstein's theory of gravitation (classical general relativity). Nineteen contributors survey recent progress and identify future avenues of research.
Read More

Author: Jean-Alain Marck,Jean-Pierre Lasota

Publisher: Cambridge University Press

ISBN: 9780521590655

Category: Science

Page: 475

View: 7846

Gravitational wave detectors will revolutionize gravitational-wave astronomy by enabling researchers to see the Universe through fine antennas, providing a clearer, more detailed image of what lies in the Universe. This book reviews all aspects of this exciting astronomical project. This timely volume provides an invaluable introduction for graduate students and will be the standard reference for researchers in astronomy and physics. An accompanying free CD-ROM (compatible with both Macintosh and PC hardware) provides numerical simulations of black holes and other exotic objects emitting gravitational radiation, together with the book in a hypertext format.
Read More

Author: Alan D. Rendall

Publisher: Oxford University Press, USA

ISBN: 9780199215409

Category: Mathematics

Page: 279

View: 3164

A graduate level text on a subject which brings together several areas of mathematics and physics: partial differential equations, differential geometry and general relativity. It explains the basics of the theory of partial differential equations in a form accessible to physicists and the basics of general relativity in a form accessible to mathematicians. In recent years the theory of partial differential equations has come to play an ever more important role in research on general relativity. This is partly due to the growth of the field of numerical relativity, stimulated in turn by work on gravitational wave detection, but also due to an increased interest in general relativity among pure mathematicians working in the areas of partial differential equations and Riemannian geometry, who have realized the exceptional richness of the interactions between geometry and analysis which arise. This book provides the background for those wishing to learn about these topics. It treats key themes in general relativity including matter models and symmetry classes and gives an introduction to relevant aspects of the most important classes of partial differential equations, including ordinary differential equations, and material on functional analysis. These elements are brought together to discuss a variety of important examples in the field of mathematical relativity, including asymptotically flat spacetimes, which are used to describe isolated systems, and spatially compact spacetimes, which are of importance in cosmology.
Read More

Author: Lydia Bieri ,Nina Zipser

Publisher: American Mathematical Soc.

ISBN: 0821848232

Category:

Page: N.A

View: 9504

A famous result of Christodoulou and Klainerman is the global nonlinear stability of Minkowski spacetime. In this book, Bieri and Zipser provide two extensions to this result. In the first part, Bieri solves the Cauchy problem for the Einstein vacuum equations with more general, asymptotically flat initial data, and describes precisely the asymptotic behavior. In particular, she assumes less decay in the power of $r$ and one less derivative than in the Christodoulou-Klainerman result. She proves that in this case, too, the initial data, being globally close to the trivial data, yields a solution which is a complete spacetime, tending to the Minkowski spacetime at infinity along any geodesic. In contrast to the original situation, certain estimates in this proof are borderline in view of decay, indicating that the conditions in the main theorem on the decay at infinity on the initial data are sharp. In the second part, Zipser proves the existence of smooth, global solutions to the Einstein-Maxwell equations. A nontrivial solution of these equations is a curved spacetime with an electromagnetic field. To prove the existence of solutions to the Einstein-Maxwell equations, Zipser follows the argument and methodology introduced by Christodoulou and Klainerman. To generalize the original results, she needs to contend with the additional curvature terms that arise due to the presence of the electromagnetic field $F$; in her case the Ricci curvature of the spacetime is not identically zero but rather represented by a quadratic in the components of $F$. In particular the Ricci curvature is a constant multiple of the stress-energy tensor for $F$. Furthermore, the traceless part of the Riemann curvature tensor no longer satisfies the homogeneous Bianchi equations but rather inhomogeneous equations including components of the spacetime Ricci curvature. Therefore, the second part of this book focuses primarily on the derivation of estimates for the new terms that arise due to the presence of the electromagnetic field.
Read More

Author: Demetrios Christodoulou

Publisher: European Mathematical Society

ISBN: 9783037190050

Category: Mathematics

Page: 147

View: 2479

The domain of application of Einstein's general relativity theory is astronomical systems. One of the mathematical methods analyzed and exploited in the present volume is an extension of Noether's fundamental principle connecting symmetries to conserved quantities. This book is intended for advanced students and researchers seeking an introduction into the methods and applications of general relativity.
Read More

Author: Yvonne Choquet-Bruhat

Publisher: Oxford University Press, USA

ISBN: 0199666466

Category: Science

Page: 279

View: 7860

General Relativity is a beautiful geometric theory, simple in its mathematical formulation but leading to numerous consequences with striking physical interpretations: gravitational waves, black holes, cosmological models, and so on. This introductory textbook is written for mathematics students interested in physics and physics students interested in exact mathematical formulations (or for anyone with a scientific mind who is curious to know more of the world we live in), recent remarkable experimental and observational results which confirm the theory are clearly described and no specialised physics knowledge is required. The mathematical level of Part A is aimed at undergraduate students and could be the basis for a course on General Relativity. Part B is more advanced, but still does not require sophisticated mathematics. Based on Yvonne Choquet-Bruhat's more advanced text, General Relativity and the Einstein Equations, the aim of this book is to give with precision, but as simply as possible, the foundations and main consequences of General Relativity. The first five chapters from General Relativity and the Einstein Equations have been updated with new sections and chapters on black holes, gravitational waves, singularities, and the Reissner-Nordstrom and interior Schwarzchild solutions. The rigour behind this book will provide readers with the perfect preparation to follow the great mathematical progress in the actual development, as well as the ability to model, the latest astrophysical and cosmological observations. The book presents basic General Relativity and provides a basis for understanding and using the fundamental theory.
Read More