Author: Kai L. Chung

Publisher: Springer-Verlag

ISBN: 3642670334

Category: Mathematics

Page: 346

View: 1505

Aus den Besprechungen: "Unter den zahlreichen Einführungen in die Wahrscheinlichkeitsrechnung bildet dieses Buch eine erfreuliche Ausnahme. Der Stil einer lebendigen Vorlesung ist über Niederschrift und Übersetzung hinweg erhalten geblieben. In jedes Kapitel wird sehr anschaulich eingeführt. Sinn und Nützlichkeit der mathematischen Formulierungen werden den Lesern nahegebracht. Die wichtigsten Zusammenhänge sind als mathematische Sätze klar formuliert." #FREQUENZ#1
Read More

Author: Joseph W. Dauben,Christoph J. Scriba

Publisher: Springer Science & Business Media

ISBN: 9783764361679

Category: Mathematics

Page: 689

View: 3111

As an historiographic monograph, this book offers a detailed survey of the professional evolution and significance of an entire discipline devoted to the history of science. It provides both an intellectual and a social history of the development of the subject from the first such effort written by the ancient Greek author Eudemus in the Fourth Century BC, to the founding of the international journal, Historia Mathematica, by Kenneth O. May in the early 1970s.
Read More

Author: N. Bourbaki

Publisher: Springer

ISBN: 9783642616945

Category: Mathematics

Page: 301

View: 546

Each volume of Nicolas Bourbakis well-known work, The Elements of Mathematics, contains a section or chapter devoted to the history of the subject. This book collects together those historical segments with an emphasis on the emergence, development, and interaction of the leading ideas of the mathematical theories presented in the Elements. In particular, the book provides a highly readable account of the evolution of algebra, geometry, infinitesimal calculus, and of the concepts of number and structure, from the Babylonian era through to the 20th century.
Read More

Author: R. Rashed

Publisher: Springer Science & Business Media

ISBN: 9401732744

Category: History

Page: 382

View: 9361

An understanding of developments in Arabic mathematics between the IXth and XVth century is vital to a full appreciation of the history of classical mathematics. This book draws together more than ten studies to highlight one of the major developments in Arabic mathematical thinking, provoked by the double fecondation between arithmetic and the algebra of al-Khwarizmi, which led to the foundation of diverse chapters of mathematics: polynomial algebra, combinatorial analysis, algebraic geometry, algebraic theory of numbers, diophantine analysis and numerical calculus. Thanks to epistemological analysis, and the discovery of hitherto unknown material, the author has brought these chapters into the light, proposes another periodization for classical mathematics, and questions current ideology in writing its history. Since the publication of the French version of these studies and of this book, its main results have been admitted by historians of Arabic mathematics, and integrated into their recent publications. This book is already a vital reference for anyone seeking to understand history of Arabic mathematics, and its contribution to Latin as well as to later mathematics. The English translation will be of particular value to historians and philosophers of mathematics and of science.
Read More

The ICMI Study

Author: John Fauvel,J.A. van Maanen

Publisher: Springer Science & Business Media

ISBN: 0306472201

Category: Education

Page: 437

View: 4940

This ground-breaking book investigates how the learning and teaching of mathematics can be improved through integrating the history of mathematics into all aspects of mathematics education: lessons, homework, texts, lectures, projects, assessment, and curricula. It draws upon evidence from the experience of teachers as well as national curricula, textbooks, teacher education practices, and research perspectives across the world. It includes a 300-item annotated bibliography of recent work in the field in eight languages.
Read More

Mathematical Logic, Algebra, Number Theory, Probability Theory

Author: Andreĭ Nikolaevich Kolmogorov,Adolʹf Pavlovich I͡Ushkevich

Publisher: Springer Science & Business Media

ISBN: 9783764364410

Category: Mathematics

Page: 308

View: 4653

New Edition - New in Paperback - This is the second revised edition of the first volume of the outstanding collection of historical studies of mathematics in the nineteenth century compiled in three volumes by A. N. Kolmogorov and A. P. Yushkevich. This second edition was carefully revised by Abe Shenitzer, York University, Ontario, Canada. The historical period covered in this book extends from the early nineteenth century up to the end of the 1930s, as neither 1801 nor 1900 are, in themselves, turning points in the history of mathematics, although each date is notable fo a remarkable event: the first for the publication of Gauss' "Disquisitiones arithmeticae," the second for Hilbert's "Mathematical Problems." Beginning in the second quarter of the nineteenth century mathematics underwent a revolution as crucial and profound in its consequences for the general world outlook as the mathematical revolution in the beginning of the modern era. The main changes included a new statement of the problem of the existence of mathematical objects, particulary in the calculus, and soon thereafter the formation of non-standard structures in geometry, arithmetic and algebra. The primary objective of the work has been to treat the evolution of mathematics in the nineteenth century as a whole; the discussion is concentrated on the essential concepts, methods, and algorithms.
Read More

Author: Umberto Bottazini

Publisher: Springer Science & Business Media

ISBN: 9780387963020

Category: Mathematics

Page: 332

View: 4964

"The true method of foreseeing the future of mathematics is to study its history and its actual state." With these words Henri Poincare began his presentation to the Fourth International Congress of Mathematicians at Rome in 1908. Although Poincare himself never actively pursued the history of mathematics, his remarks have given both historians of mathematics and working mathematicians a valuable methodological guideline, not so much for indulging in improbable prophecies about the future state of mathematics, as for finding in history the origins and moti va tions of contemporary theories, and for finding in the present the most fruitful statements of these theories. At the time Poincare spoke, at the beginning of this century, historical research in the various branches of rna thema tics was emerging with distinctive autonomy. In Germany the last volume of Cantor's monumental Vorlesungell iiber die Gesehiehte der Mathematik had just appeared, and many new specialized journals were appearing to complement those already in existence, from Enestrom's Bibliotheea mathematiea to Loria's Bollettino di bibliogra/ia e di storia delle seienze matematiehe. The annual Jahresberiehte of the German Mathematical Society included noteworthy papers of a historical nature, as did the Enzyklopadie der mathematisehen Wissenseha/ten, an imposing work constructed according to the plan of Felix Klein.
Read More

Author: Birgit Bergmann,Moritz Epple

Publisher: Springer-Verlag

ISBN: 3540692525

Category: Mathematics

Page: 236

View: 9391

Der Band dokumentiert eine Ausstellung, die im Jahr der Mathematik durch sieben deutsche Städte tourt. Sie zeigt, welch tragende Rolle jüdische Mathematiker im Kaiserreich und in der Weimarer Republik spielten, und sie erinnert daran, wie sie nach 1933 in die Emigration, zur Flucht und in den Tod getrieben wurden. Dabei wird deutlich, dass jüdische Mathematiker in allen Bereichen tätig waren, und wie unterschiedlich ihre jeweiligen Aktivitäten waren. Das widerlegt jedes Klischee über ihren angeblich besonderen Charakter in der Mathematik.
Read More

Author: Giovanni Ferraro

Publisher: Springer Science & Business Media

ISBN: 9780387734682

Category: Mathematics

Page: 392

View: 6419

The manuscript gives a coherent and detailed account of the theory of series in the eighteenth and early nineteenth centuries. It provides in one place an account of many results that are generally to be found - if at all - scattered throughout the historical and textbook literature. It presents the subject from the viewpoint of the mathematicians of the period, and is careful to distinguish earlier conceptions from ones that prevail today.
Read More

An Essay in the History of Mathematics 1869–1926

Author: Thomas Hawkins

Publisher: Springer Science & Business Media

ISBN: 9780387989631

Category: Mathematics

Page: 566

View: 9487

The great Norwegian mathematician Sophus Lie developed the general theory of transformations in the 1870s, and the first part of the book properly focuses on his work. In the second part the central figure is Wilhelm Killing, who developed structure and classification of semisimple Lie algebras. The third part focuses on the developments of the representation of Lie algebras, in particular the work of Elie Cartan. The book concludes with the work of Hermann Weyl and his contemporaries on the structure and representation of Lie groups which serves to bring together much of the earlier work into a coherent theory while at the same time opening up significant avenues for further work.
Read More

A Variational Approach, Augmented Edition

Author: Clive L. Dym,Irving H. Shames

Publisher: Springer Science & Business Media

ISBN: 1461460344

Category: Technology & Engineering

Page: 685

View: 2423

Solid Mechanics: A Variational Approach, Augmented Edition presents a lucid and thoroughly developed approach to solid mechanics for students engaged in the study of elastic structures not seen in other texts currently on the market. This work offers a clear and carefully prepared exposition of variational techniques as they are applied to solid mechanics. Unlike other books in this field, Dym and Shames treat all the necessary theory needed for the study of solid mechanics and include extensive applications. Of particular note is the variational approach used in developing consistent structural theories and in obtaining exact and approximate solutions for many problems. Based on both semester and year-long courses taught to undergraduate seniors and graduate students, this text is geared for programs in aeronautical, civil, and mechanical engineering, and in engineering science. The authors’ objective is two-fold: first, to introduce the student to the theory of structures (one- and two-dimensional) as developed from the three-dimensional theory of elasticity; and second, to introduce the student to the strength and utility of variational principles and methods, including briefly making the connection to finite element methods. A complete set of homework problems is included.
Read More

A History of Mechanics Prospective

Author: Danilo Capecchi

Publisher: Springer Science & Business Media

ISBN: 8847020565

Category: Technology & Engineering

Page: 492

View: 3002

The book presents a history of classical mechanics by focusing on issues of equilibrium. The historical point of view adopted here restricts attention to cases where the effectiveness of forces is assessed on the basis of the virtual motion of their points of application. For completeness, hints of the alternative approach are also referred, the Archimedean for ancient mechanics and the Newtonian for modern mechanics. The laws resulting from consideration of virtual motions are named laws of virtual work. The modern formulations of the principle of virtual work are only a particular form of them. The book begins with the first documented formulations of laws of virtual work in the IV century BC in Greece and proceeds to the end of the XIX century AD in Europe. A significant space is devoted to Arabic and Latin mechanics of Middle Ages. With the Renaissance it began to appear slightly different wordings of the laws, which were often proposed as unique principles of statics. The process reached its apex with Bernoulli and Lagrange in the XVIII century. The book ends with some chapters dealing with the discussions that took place in the French school on the role of the Lagrangian version of the law of virtual work and its applications to continuum mechanics.
Read More

Author: Yuval Noah Harari

Publisher: DVA

ISBN: 364110498X

Category: History

Page: 528

View: 4813

Krone der Schöpfung? Vor 100 000 Jahren war der Homo sapiens noch ein unbedeutendes Tier, das unauffällig in einem abgelegenen Winkel des afrikanischen Kontinents lebte. Unsere Vorfahren teilten sich den Planeten mit mindestens fünf weiteren menschlichen Spezies, und die Rolle, die sie im Ökosystem spielten, war nicht größer als die von Gorillas, Libellen oder Quallen. Vor 70 000 Jahren dann vollzog sich ein mysteriöser und rascher Wandel mit dem Homo sapiens, und es war vor allem die Beschaffenheit seines Gehirns, die ihn zum Herren des Planeten und zum Schrecken des Ökosystems werden ließ. Bis heute hat sich diese Vorherrschaft stetig zugespitzt: Der Mensch hat die Fähigkeit zu schöpferischem und zu zerstörerischem Handeln wie kein anderes Lebewesen. Anschaulich, unterhaltsam und stellenweise hochkomisch zeichnet Yuval Harari die Geschichte des Menschen nach und zeigt alle großen, aber auch alle ambivalenten Momente unserer Menschwerdung.
Read More

Author: H. H. Goldstine

Publisher: Springer Science & Business Media

ISBN: 1461381061

Category: Mathematics

Page: 410

View: 4435

The calculus of variations is a subject whose beginning can be precisely dated. It might be said to begin at the moment that Euler coined the name calculus of variations but this is, of course, not the true moment of inception of the subject. It would not have been unreasonable if I had gone back to the set of isoperimetric problems considered by Greek mathemati cians such as Zenodorus (c. 200 B. C. ) and preserved by Pappus (c. 300 A. D. ). I have not done this since these problems were solved by geometric means. Instead I have arbitrarily chosen to begin with Fermat's elegant principle of least time. He used this principle in 1662 to show how a light ray was refracted at the interface between two optical media of different densities. This analysis of Fermat seems to me especially appropriate as a starting point: He used the methods of the calculus to minimize the time of passage cif a light ray through the two media, and his method was adapted by John Bernoulli to solve the brachystochrone problem. There have been several other histories of the subject, but they are now hopelessly archaic. One by Robert Woodhouse appeared in 1810 and another by Isaac Todhunter in 1861.
Read More

Author: Martin Barner,Friedrich Flohr

Publisher: Walter de Gruyter

ISBN: 3110854775

Category: Mathematics

Page: 554

View: 6108

Read More

Author: J. Lützen

Publisher: Springer Science & Business Media

ISBN: 1461394724

Category: Mathematics

Page: 232

View: 1985

I first learned the theory of distributions from Professor Ebbe Thue Poulsen in an undergraduate course at Aarhus University. Both his lectures and the textbook, Topological Vector Spaces, Distributions and Kernels by F. Treves, used in the course, opened my eyes to the beauty and abstract simplicity of the theory. However my incomplete study of many branches of classical analysis left me with the question: Why is the theory of distributions important? In my continued studies this question was gradually answered, but my growing interest in the history of mathematics caused me to alter my question to other questions such as: For what purpose, if any, was the theory of distributions originally created? Who invented distributions and when? I quickly found answers to the last two questions: distributions were invented by S. Sobolev and L. Schwartz around 1936 and 1950, respectively. Knowing this answer, however, only created a new question: Did Sobolev and Schwartz construct distributions from scratch or were there earlier trends and, if so, what were they? It is this question, concerning the pre history of the theory of distributions, which I attempt to answer in this book. Most of my research took place at the History of Science Department of Aarhus University. I wish to thank this department for its financial and intellectual support. I am especially grateful to Lektors Kirsti Andersen from the History of Science Department and Lars Mejlbo from the Mathematics Department, for their kindness, constructive criticism, and encouragement.
Read More