A Text and Source Book of Problems

Author: Andrew Adler,John E. Coury

Publisher: Jones & Bartlett Pub

ISBN: 9780867204728

Category: Mathematics

Page: 401

View: 6544

Read More

The Queen of Mathematics Entertains

Author: Albert H. Beiler

Publisher: Courier Corporation

ISBN: 0486210960

Category: Games

Page: 349

View: 4671

Number theory proves to be a virtually inexhaustible source of intriguing puzzle problems. Includes divisors, perfect numbers, the congruences of Gauss, scales of notation, the Pell equation, more. Solutions to all problems.
Read More

Author: William J. LeVeque

Publisher: Courier Corporation

ISBN: 0486150763

Category: Mathematics

Page: 160

View: 3565

Superb introduction to Euclidean algorithm and its consequences, congruences, continued fractions, powers of an integer modulo m, Gaussian integers, Diophantine equations, more. Problems, with answers. Bibliography.
Read More

In the Spirit of the Mathematical Olympiads

Author: Michael Th. Rassias

Publisher: Springer Science & Business Media

ISBN: 1441904956

Category: Mathematics

Page: 324

View: 5998

The book provides a self-contained introduction to classical Number Theory. All the proofs of the individual theorems and the solutions of the exercises are being presented step by step. Some historical remarks are also presented. The book will be directed to advanced undergraduate, beginning graduate students as well as to students who prepare for mathematical competitions (ex. Mathematical Olympiads and Putnam Mathematical competition).
Read More

with a view towards Number Theory

Author: Manfred Einsiedler,Thomas Ward

Publisher: Springer Science & Business Media

ISBN: 9780857290212

Category: Mathematics

Page: 481

View: 7188

This text is a rigorous introduction to ergodic theory, developing the machinery of conditional measures and expectations, mixing, and recurrence. Beginning by developing the basics of ergodic theory and progressing to describe some recent applications to number theory, this book goes beyond the standard texts in this topic. Applications include Weyl's polynomial equidistribution theorem, the ergodic proof of Szemeredi's theorem, the connection between the continued fraction map and the modular surface, and a proof of the equidistribution of horocycle orbits. Ergodic Theory with a view towards Number Theory will appeal to mathematicians with some standard background in measure theory and functional analysis. No background in ergodic theory or Lie theory is assumed, and a number of exercises and hints to problems are included, making this the perfect companion for graduate students and researchers in ergodic theory, homogenous dynamics or number theory.
Read More

An approach through history From Hammurapi to Legendre

Author: André Weil

Publisher: Springer Science & Business Media

ISBN: 0817645713

Category: Mathematics

Page: 377

View: 6925

This book presents a historical overview of number theory. It examines texts that span some thirty-six centuries of arithmetical work, from an Old Babylonian tablet to Legendre’s Essai sur la Théorie des Nombres, written in 1798. Coverage employs a historical approach in the analysis of problems and evolving methods of number theory and their significance within mathematics. The book also takes the reader into the workshops of four major authors of modern number theory: Fermat, Euler, Lagrange and Legendre and presents a detailed and critical examination of their work.
Read More

Structures, Examples, and Problems

Author: Titu Andreescu,Dorin Andrica

Publisher: Springer Science & Business Media

ISBN: 9780817646455

Category: Mathematics

Page: 384

View: 8511

This introductory textbook takes a problem-solving approach to number theory, situating each concept within the framework of an example or a problem for solving. Starting with the essentials, the text covers divisibility, unique factorization, modular arithmetic and the Chinese Remainder Theorem, Diophantine equations, binomial coefficients, Fermat and Mersenne primes and other special numbers, and special sequences. Included are sections on mathematical induction and the pigeonhole principle, as well as a discussion of other number systems. By emphasizing examples and applications the authors motivate and engage readers.
Read More

Geometry, Numbers, Equations

Author: John Stillwell

Publisher: Springer Science & Business Media

ISBN: 1475739761

Category: Mathematics

Page: 184

View: 1868

Algebra is abstract mathematics - let us make no bones about it - yet it is also applied mathematics in its best and purest form. It is not abstraction for its own sake, but abstraction for the sake of efficiency, power and insight. Algebra emerged from the struggle to solve concrete, physical problems in geometry, and succeeded after 2000 years of failure by other forms of mathematics. It did this by exposing the mathematical structure of geometry, and by providing the tools to analyse it. This is typical of the way algebra is applied; it is the best and purest form of application because it reveals the simplest and most universal mathematical structures. The present book aims to foster a proper appreciation of algebra by showing abstraction at work on concrete problems, the classical problems of construction by straightedge and compass. These problems originated in the time of Euclid, when geometry and number theory were paramount, and were not solved until th the 19 century, with the advent of abstract algebra. As we now know, alge bra brings about a unification of geometry, number theory and indeed most branches of mathematics. This is not really surprising when one has a historical understanding of the subject, which I also hope to impart.
Read More

A Real and Imaginary History of Algebra

Author: John Derbyshire

Publisher: National Academies Press

ISBN: 030909657X

Category: Science

Page: 390

View: 8749

Prime Obsession taught us not to be afraid to put the math in a math book. Unknown Quantity heeds the lesson well. So grab your graphing calculators, slip out the slide rules, and buckle up! John Derbyshire is introducing us to algebra through the ages -- and it promises to be just what his die-hard fans have been waiting for. "Here is the story of algebra." With this deceptively simple introduction, we begin our journey. Flanked by formulae, shadowed by roots and radicals, escorted by an expert who navigates unerringly on our behalf, we are guaranteed safe passage through even the most treacherous mathematical terrain. Our first encounter with algebraic arithmetic takes us back 38 centuries to the time of Abraham and Isaac, Jacob and Joseph, Ur and Haran, Sodom and Gomorrah. Moving deftly from Abel's proof to the higher levels of abstraction developed by Galois, we are eventually introduced to what algebraists have been focusing on during the last century. As we travel through the ages, it becomes apparent that the invention of algebra was more than the start of a specific discipline of mathematics -- it was also the birth of a new way of thinking that clarified both basic numeric concepts as well as our perception of the world around us. Algebraists broke new ground when they discarded the simple search for solutions to equations and concentrated instead on abstract groups. This dramatic shift in thinking revolutionized mathematics. Written for those among us who are unencumbered by a fear of formulae, Unknown Quantity delivers on its promise to present a history of algebra. Astonishing in its bold presentation of the math and graced with narrative authority, our journey through the world of algebra is at once intellectually satisfying and pleasantly challenging.
Read More

Author: Harold N. Shapiro

Publisher: Courier Corporation

ISBN: 0486466698

Category: Mathematics

Page: 459

View: 6968

Starting with the fundamentals of number theory, this text advances to an intermediate level. Author Harold N. Shapiro, Professor Emeritus of Mathematics at New York University's Courant Institute, addresses this treatment toward advanced undergraduates and graduate students. Selected chapters, sections, and exercises are appropriate for undergraduate courses. The first five chapters focus on the basic material of number theory, employing special problems, some of which are of historical interest. Succeeding chapters explore evolutions from the notion of congruence, examine a variety of applications related to counting problems, and develop the roots of number theory. Two "do-it-yourself" chapters offer readers the chance to carry out small-scale mathematical investigations that involve material covered in previous chapters.
Read More

An Introduction to Mathematics

Author: W.A. Coppel

Publisher: Springer Science & Business Media

ISBN: 0387894853

Category: Mathematics

Page: 610

View: 5613

Number Theory is more than a comprehensive treatment of the subject. It is an introduction to topics in higher level mathematics, and unique in its scope; topics from analysis, modern algebra, and discrete mathematics are all included. The book is divided into two parts. Part A covers key concepts of number theory and could serve as a first course on the subject. Part B delves into more advanced topics and an exploration of related mathematics. The prerequisites for this self-contained text are elements from linear algebra. Valuable references for the reader are collected at the end of each chapter. It is suitable as an introduction to higher level mathematics for undergraduates, or for self-study.
Read More

Author: Pierre Samuel,Allan J. Silberger

Publisher: N.A

ISBN: 9780486466668

Category: Mathematics

Page: 109

View: 3496

Algebraic number theory introduces students not only to new algebraic notions but also to related concepts: groups, rings, fields, ideals, quotient rings and quotient fields, homomorphisms and isomorphisms, modules, and vector spaces. Author Pierre Samuel notes that students benefit from their studies of algebraic number theory by encountering many concepts fundamental to other branches of mathematics — algebraic geometry, in particular. This book assumes a knowledge of basic algebra but supplements its teachings with brief, clear explanations of integrality, algebraic extensions of fields, Galois theory, Noetherian rings and modules, and rings of fractions. It covers the basics, starting with the divisibility theory in principal ideal domains and ending with the unit theorem, finiteness of the class number, and the more elementary theorems of Hilbert ramification theory. Numerous examples, applications, and exercises appear throughout the text.
Read More

Author: John Riordan

Publisher: Princeton University Press

ISBN: 1400854334

Category: Mathematics

Page: 258

View: 3271

This book introduces combinatorial analysis to the beginning student. The author begins with the theory of permutation and combinations and their applications to generating functions. In subsequent chapters, he presents Bell polynomials; the principle of inclusion and exclusion; the enumeration of permutations in cyclic representation; the theory of distributions; partitions, compositions, trees and linear graphs; and the enumeration of restricted permutations. Originally published in 1980. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Read More

Author: James J. Tattersall

Publisher: Cambridge University Press

ISBN: 9780521850148

Category: Mathematics

Page: 430

View: 4201

This textbook is intended to serve as a one-semester introductory course in number theory and in this second edition it has been revised throughout and many new exercises have been added. At the heart of the book are the major number theoretic accomplishments of Euclid, Fermat, Gauss, Legendre, and Euler, and to fully illustrate the properties of numbers and concepts developed in the text, a wealth of exercises have been included. For students new to number theory, whatever their background, this is a stimulating and entertaining introduction to the subject.
Read More

Author: Harry Pollard,Harold G. Diamond

Publisher: Courier Corporation

ISBN: 9780486404547

Category: Mathematics

Page: 162

View: 517

Excellent intro to basics of algebraic number theory. Gausian primes; polynomials over a field; algebraic number fields; algebraic integers and integral bases; uses of arithmetic in algebraic number fields; the fundamental theorem of ideal theory and its consequences; ideal classes and class numbers; Fermat conjecture. 1975 edition.
Read More

Author: Ivan Niven,Herbert S. Zuckerman,Hugh L. Montgomery

Publisher: John Wiley & Sons

ISBN: 9788126518111

Category: Number theory

Page: 545

View: 8533

· Divisibility· Congruences· Quadratic Reciprocity and Quadratic Forms· Some Functions of Number Theory· Some Diophantine Equations· Farey Fractions and Irrational Numbers· Simple Continued Fractions· Primes and Multiplicative Number Theory· Algebraic Numbers· The Partition Function · The Density of Sequences of Integers
Read More

Author: Boris V. Gnedenko

Publisher: Routledge

ISBN: 1351408585

Category: Mathematics

Page: 520

View: 1537

This book is the sixth edition of a classic text that was first published in 1950 in the former Soviet Union. The clear presentation of the subject and extensive applications supported with real data helped establish the book as a standard for the field. To date, it has been published into more that ten languages and has gone through five editions. The sixth edition is a major revision over the fifth. It contains new material and results on the Local Limit Theorem, the Integral Law of Large Numbers, and Characteristic Functions. The new edition retains the feature of developing the subject from intuitive concepts and demonstrating techniques and theory through large numbers of examples. The author has, for the first time, included a brief history of probability and its development. Exercise problems and examples have been revised and new ones added.
Read More

Author: Alfred North Whitehead,Bertrand Russell

Publisher: N.A

ISBN: N.A

Category: Logic, Symbolic and mathematical

Page: N.A

View: 7369

Read More

Author: Barry Mazur,William Stein

Publisher: Cambridge University Press

ISBN: 1107101921

Category: Mathematics

Page: 150

View: 9550

This book introduces prime numbers and explains the famous unsolved Riemann hypothesis.
Read More

An Elementary Introduction to the Mathematical Theory of Knots

Author: Colin Conrad Adams

Publisher: American Mathematical Soc.

ISBN: 0821836781

Category: Mathematics

Page: 306

View: 5535

Knots are familiar objects. We use them to moor our boats, to wrap our packages, to tie our shoes. Yet the mathematical theory of knots quickly leads to deep results in topology and geometry. The Knot Book is an introduction to this rich theory, starting from our familiar understanding of knots and a bit of college algebra and finishing with exciting topics of current research. The Knot Book is also about the excitement of doing mathematics. Colin Adams engages the reader with fascinating examples, superb figures, and thought-provoking ideas. He also presents the remarkable applications of knot theory to modern chemistry, biology, and physics. This is a compelling book that will comfortably escort you into the marvelous world of knot theory. Whether you are a mathematics student, someone working in a related field, or an amateur mathematician, you will find much of interest in The Knot Book.
Read More